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ARTICLES 

The Baseball-Card Collector's Query 
JAMES T. SANDEFUR 

Georgetown University 
Washington, DC 20057-0996 

1. The Average Size of a Baseball-Card Collection 

The following relates my attempt to solve a problem that was asked of a colleague by a 
baseball-card collector. In attempting to solve this problem, I used a number of 
techniques from undergraduate mathematics, including series, the exponential func- 
tion, Newton's method, probability, statistics, simulation, and discrete dynamical 
systems. I was also reminded about the importance of carefully stating the problem. 

Suppose that there exist baseball cards for n different baseball players. Assume for 
simplicity that each card is equally likely to be acquired each time a new card is 
purchased. One copy of each different card in a collection is put into the "original" 
pile. All duplicates, triplicates, etc. are put into the "duplicate" pile. The cost for 
obtaining the first "original" card is just the cost of that card. Once the collector has 
acquired a large number of "original" cards, the expected cost for obtaining one more 
"original" card will be relatively large, since most cards acquired will be duplicates. 

There are many questions that could be asked relating to the cost of a collection of 
baseball cards. In this section, we will investigate one particular question, the 
baseball-card collector's question (BCQ): 

What is the average number of cards, a., in the "original" pile when the 
two piles are equal for the first time? 

One reason for studying this question is that at this point, the collector has had to 
purchase two cards for each original obtained. We could just as well have asked at 
what point the "original" pile is half or a third of the size of the "duplicate" pile. 
Another reason for looking at this question is that a baseball-card collector actually 
asked a colleague this question. 

It is clear that this question has an answer. When the collector acquires his or her 
first card, it is clearly put into the "original" pile, so the "original" pile is larger than 
the "duplicate" pile. But once 2n + 1 cards have been acquired, the "duplicate" pile 
must be larger since the "original" pile can have at most n cards in it. At some point, 
the two piles must be the same size. 

Let p1,(j) be the probability that the two stacks are equal for the first time with j 
cards in each. Let's do a few simple calculations. Suppose there are only n = 2 distinct 
baseball cards. The first card collected goes into the "original" pile. There is a 50 
percent chance the next card matches the first, so p2(1) = 0.5. Since there are only 2 
distinct cards, the other half of the time the two piles will be of equal size for the first 
time when there are two cards in each; that is, p2(2) = 0.5. The average size of the 
"original" pile when the two piles are equal for the first time is then a2 = 1p2(1) + 
2P2(2) = 1.5. 

243 
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Suppose n =3. Simple calculations given that p3(1) = 1/3, p3(2) = 8/27, and 
p3(3)= 10/27. Therefore, the average number of cards in the "original" stack when 
the piles are equal for the first time is 

a3 = lp3(1) + 2p3(2) + 3p3(3) = (1/3) + 2(8/27) + 3(10/27) = 55/27= 2.037. 

For n = 4, 5, and 6 the average number of cards in the "original" pile when they are 
equal for the first time is a4 = 2.611328, a5 = 3.219725, and a6 = 3.858451, respec- 
tively. In general, 

n 

a. =EJPn( j )- 

j=l 

To compute a6, it is necessary to compute P6(1)N,'., P6(6). To find, say P6(4), it is 
necessary to find the probability of each of the ways that 4 originals can be obtained 
before getting 4 duplicates, with 6 different cards being possible. There are 5 ways of 
getting 4 originals and 4 duplicates: 

oooodddd, ooododdd, oooddodd, oodooddd, and oodododd 

where o represents an original and d a duplicate. (Remember that P6(4) implies that 
the first time the number of originals equals the number of duplicates is when 4 
originals have been obtained. So the probabilities of ooddoodd and other similar 
combinations do not need to be computed.) To compute the probability of one of 
these, say p(oooddodd), we count the ways of getfing cards in this order, then divide 
by 68; 

p(oooddodd)= 68 

Another approach to studying BCQ is to look at the ratio, r', = an/n, of the number 
of cards in the "original" pile of the number of possible cards, n, when the two piles 
are equal for the first time. In this case, the average ratio of the cards in the "original" 
pile to n when the two piles are first equal is r2 = 1.5/2 = 0.75, r3 = 2.037/3 = 0.679, 
r4= 0.652832, r5 = 0.643945, and r6 = 0.643075. One reason for looking at the ratio 
is that the answers to BCQ for different n-values can be compared. 

2. The Expected Number of Originals in a Collection of Size k 

In trying to solve BCQ, I made the mistake of trying to solve the general problem 
before working the special cases just discussed. My approach was to define en(k) as 
the expected number of cards in the "original" pile when k cards have been acquired, 
and there are n distinct cards. Clearly, en(0) = 0 and e(l) = 1. Suppose that en(k) 
has been computed. Then e.(k + 1) is en(k) plus the probability that the k + Ith card 
is different from the previous k cards. Since en(k) is the expected number of different 
cards currently in the collection, the probability the next card will be different from 
the first k cards is (n - e,(k))/n, that is, the number of cards different from the ones 
owned divided by the number of different cards. This gives the first-order affine 
dynamical system 

e.(k + 1) = e,,(k) + (n - e.(k))/n = ( - l/n)e.(k) + 1. 

Since we know that en(1)= 1, this dynamical system gives that e.(2) = (1 - 1/n) + 
1, e,,(3) = (1 - 1/n)2 + (1 - 1/n) + 1, and so forth. In general, et,(k) is given by the 
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finite geometric series 

en( k) = (I1-l/n) k-1 + (I - I/n)k-2 + . +( -(1 n +1 

This finite geometric series can be rewritten as 

en(k) = -n(- l/n)k + n. 

Let f.(k) equal the expected number of cards in the "duplicate" stack when k 
cards have been obtained. Clearly, f,(k) = k - en(k) = k - n + n(l - l/n)k. The 
stacks are the same size when en(k) =fn(k). 

When n = 2, the formula for en(k) gives that e2(1) = 1 and f2(1)= 0; e2(2) = 1.5 
and f2(2) = 0.5; e2(3) = 1.75 and f2(3) = 1.25; and e2(4) = 1.875 and f2(4) = 2.125. 
My second mistake was to assume the two piles would be the same size for a 
collection containing k = kn cards where kn satisfies the equation 

en(k) =fn(k) or -2n(1-1/n)2 +2n-k=O 
after simplification. For n = 2, the "original" and "duplicate" stacks are never 
expected to be the same size, but once 4 cards have been obtained, the "duplicate" 
stack is expected to be bigger than the "original" stack. Thus the solution for en(k) 
can be used to find the minimum collection size for which the "original" stack is 
expected to be at most the size of the "duplicate" stack; that is, the smallest integer k 
for which 

-2n(1- 1/n)k + 2n - k < 0. 
The approximate solution, k., can be found using Newton's method. The actual 

solution is then [knl, the smallest integer greater than or equal to kn. If, say, 
n = 1000, then 

-2000(1 - 1/ 1000) + 2000 - k = 0 
gives k1ooo = 1594.17, and therefore, [ k1n = 1595. 

Although I was attempting to solve BCQ, [kj is actually the answer to an 
alternative question (AQ): 

How nwny cards must I collect before the "original" pile is expected to be 
smaller than the "duplicate" pile? 

To help distinguish between BCQ and AQ, define pn(i,j) as the probability that 
the "original" pile has i cards and the "duplicate" pile has j cards when k = i +j 
cards have been obtained. This gives the collection of probabilities 

Pti (?, 0 ) Pn(O 1) Pn(O0, 2) Pn, (? , 3) ... 

pti( 1, 0) MP1(, 1) Pn(l, 2) PnG, 3) .. 

p(2, 0) pn(2, 1) p,,(2, 2) pn(2,3) .. 

P11(3,0) Pn(3,1) Pn(3,2) Pn(3,3) ... 

Clearly, Pn(O,J) = 0 for all j, and pn(i,j) = 0 if i > n. 
Consider the sum 

n 

j=O 

which gives the expected number of cards in the first pile when the two piles are 
equal. This resembles the solution to BCQ, but Pn(j, j) 2 Pn(j) because the two piles 
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may be equal at j cards each while also having been equal with fewer cards each. On 
the other hand, 

k 
en(k) = E jp(j, k-j), 

j=o 

uses the probabilities along "reflected" diagonals, from upper right to lower left. 
Solving AQ means finding the first such diagonal that gives en(k) ? k/2. Differences 
between BCQ and AQ are reflected in the different probabilities used in answering 
each question. 

The interested reader is encouraged to show that the dynamical system 

e.(k + ) = (1 - ln)e.(k) + 1 

is satisfied by en(k) = Ek.ojpn(j, k -j). This can be done using the relations 

p(,j) = (n - i + 1) pn(i - Lj) + iPn( i - 1) if i > l and j > 0, n 

P.( i) n n, p_(i0)=) 
j.1 

3. The Fraction of the Cards in Each Pile 

For BCQ, we studied r. = an/n, the fraction of the n distinct cards in the "original" 
pile when the two piles were, on average, equal for the first time. For AQ, the two 
piles are expected to be the same size when the collection contains kn cards. In this 
case, there are k,,/2 cards in each pile. As we did for BCQ, let's study the fraction of 
the n distinct cards expected to be in the "original" pile when there are kn cards in 
the collection. Denote this fraction by x11 = kn/2n, where k. is the solution to 

-2n(1 - 1/n)k + 2n - k = 0. 

It follows that x, solves the equation 

l-(1-l/n) -x=0. 

As n tends to infinity, (1 - 1/n)" tends to e-1, so as the number of possible cards 
increases, the ratio x1= kn/2n approaches the solution to the equation 

1-e -2x x= 0. 

The approximate solution X = 0.79681213 to eight decimal places, can be found 
using Newton's method, a graphing calculator, or a computer algebra system. 

This implies that for large n, xn, = kn/2n x X, or k. x 2nX. This means, in 
context, that the two piles are expected to have the same number of cards when the 
collection contains about 1.6n cards. At this point, moreover, the collection will 
contain about 80 percent of the possible cards. 

To see how fast x. converges to 0.796812 as n increases, I used Newton's method 
to find roots of 1 - (1 - 1/n)2'x - x = 0 for several values of n. In particular, I found 
the following pairs (n, x.): 

(2,0.9225) (3, 0.8834) (4,0.8627) 
(10,0.8237) (50,0.8023) (100,0.7995) 
(1000,0.7971) (10 000,0.79684) (100 000,0.796815) 
(1 000 000, 0.796 812 40) 
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4. Comparing the Answers to the Two Questions 

How does the answer to AQ relate to the answer to BCQ? Some relatively simple 
calculations reveal that BCQ and AQ have quite different answers, at least when n is 
relatively small. For BCQ, the average of the ratio of the "original" stack to n when 
the two stacks are equal for the first time was seen to be r. = an/n = 0.75, when 
n = 2. This contrasts with x2 = k2/2(2) = 0.9225. More comparisons are: 

n= 2 3 4 5 6 
rn= 0.75 0.679 0.652832 0.643945 0.643075 
Xn= 0.9225 0.8834 0.8627 0.84991 0.841277 

The second list of ratios was computed using the solution xn = kn/2n and not 
I k.I/2n. It should be clear that as n goes to infinity, kn/2n and [knl/2n converge 
to the same limit. 

5. Computer Simulations of. Card Collecting 

To learn more about BCQ I developed a computer program to simulate the random 
acquisition of cards. To check my program, I used n = 5 different cards, and 
simulated the collection of cards until both piles were the same for the first time. I 
repeated the simulation a total of 1000 times and obtained r5 = 0.641 as the average 
ratio of cards in the "original" pile on n = 5. This agreed with my previously 
computed answer of r5 = 0.644. I then simulated the problem 1000 times using 
n = 10. This gave a ratio of r'o = 0.6777. I then made 100 runs each for n = 100, 
1000, 10000, and 100 000, getting sample means of roo = 0.7808, rj' = 
0.7973, r 0 1 = 0.797 505, riooooo = 0.796 623. Three runs using n = 1000 000 gave a 
sample mean of r1 ow ow = 0. 796 69. 

The results of these simulations lead me to believe that the answers to BCQ and 
AQ are related in that both rn and xn tend to X x 0.796 812, the root of 1 - e-2x - x 
=0, as n tends to infinity. 

For simulations in which the number of possible originals, n, is relatively small, the 
following TI-calculator program works well. For large n or a large number of 
simulations, some computer system should be used. I used a Basic program, which I 
will be glad to send to interested readers. 

:Disp "NUMBER DIFF CARDS":Input N :0 -- K :0 - L :LbI 1 
:K/N--P :rand--A :If A>P :1 +K-K :If A<P :1 +L- :If 
K> L :Goto 1: Disp K 

6. Are the Answers to the Questions the Same in the Limit? 

A heuristic argument that r. -+ X goes as follows. Let n be large. The probability that 
the two piles are the same at 1 each is p.(l) = 1/n. For the first few cards added to 
the collection, the "original" pile is growing faster than the "duplicate" pile, since we 
are more likely to get an "original" than a "duplicate." In fact p"(2) = 4/n2 - 4/n3 
and pn(3) is on the order of I/n3. But when the "original" pile has more than n/2 
cards in it, the "duplicates" start accumulating faster than the "originals." When the 
collection has kn 2nX cards in it, the two stacks are expected to be the same size, 
en(k) =f.(k) = k./2 0.8n. Thus, for collection sizes k close to k., the "duplicate" 
pile is growing much faster than the original. In fact, at this point the "original" pile 
has about 80 percent of the possible cards, so there is a 20 percent chance of a new 
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card and an 80 percent chance of a duplicate. Thus, de.(k)/dk z 0.2 and df.(k)/dk 
z 0.8 at k z kn. (The reader should compute these derivatives to check this claim.) 
Thus, pj(a) will be its largest for a-values close to k./2 and these probabilities 
should be significantly larger than all of the other probabilities. This should result in 
an average size a. for the "original" pile that is close to k./2 and r. should then be 
close to X. 

This argument helps explain why the answers to the problems are apparently the 
same for large n. It is not meant to be a proof that the two limits are identical. It also 
leaves me wondering whether the stronger result, 

la,-knl )o 

is true. 
This argument led me to thinking about rates of change and derivatives. We might 

ask for instance: For what value of k does the number of "originals" most exceed the 
number of "duplicates"; that is, for what k is 

en(k) -f.(k) = -2n(1 - I/n)+ 2n - k 

largest. The calculus solution is to take the derivative of the function en(k) -fn(k) 
with respect to k, set the derivative equal to zero and solve. This solution is 

k In2+lnn+ln(Inn-ln(n- 1)) 
Ik nn-ln(n-1) 

which should be rounded to the nearest integer. 
Another solution is the value of k for which 

ejlk) = -n(1-lI/n )k + n = n/2 
since beyond this point we are more likely to get a "duplicate" card. The solution to 
this is 

kit 
In2 k Inn -ln(n -1) 

It is interesting that the difference in these solutions, 

k'-k"= Inn+ln(lnn-ln(n-1)) Inn-ln(n- 1) 
is slightly less than one-half for all values of n greater than 2, so that the two answers 
are essentially the same. 

7. Conclusion 

After all of this work, an exact answer to BCQ for arbitrary n still eludes me, although 
I believe this answer can be derived by properly using the sum 

n 

E jPn 0, j), 
j=O 

and the relationship 

(n - i+ 1) NO - 1J) +iPn(i,j -1). 
n 
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A Natural Classification of Curves and Surfaces 
With Reflection Properties 

DANIEL DRUCKER 
Wayne State University 

Detroit, MI 48202 

PHIL LOCKE 
University of Maine 
Orono, ME 04469 

Introduction 

Parabolic mirrors and elliptic domes ("whispering galleries") are familiar examples of 
focally reflective surfaces. In this paper we show that only conic curves and their 
corresponding surfaces of revolution (and in degenerate cases, lines and planes) are 
focally reflective. In [1], curves and surfaces with reflection properties were classified 
by solving differential equations in polar and spherical coordinates. Here we use a 
coordinate-free method to achieve the same classification by relating reflection 
properties to the defining focal properties of conics. The well-known orthogonality 
property of confocal conics comes as a bonus. 

Finite Points and Points at Infinity 

We identify each point P in Rn (for us, n =2 or n = 3)with the vector OPfrom the 
origin to P. This enables us to write Q - P instead of PQ whenever we wish. Points of 
D" will sometimes be called finite. By contrast, a point at infinity is a line through 
the origin, viewed as a new "point" not in Rn. (The term "point at infinity" comes 
from imagining a point that is approached by moving infinitely far away from the 
origin in either direction along the line.) The point at infinity specified by a line I will 
be denoted 1*. The set consisting of R', together with its points at infinity, is denoted 
P n and called projective n-space.' If P e Rl", we define the line joining P to l* to be 
the line lp through P parallel to 1. We say that l* "lies on" lp. 

Curves with Reflection Properties 

Let a: I -- D-2 be a smooth regular parametrized curve in R2 defined on an open 
interval I, and let F,, F2 be points in P'2\a(I). ("Regular" means that a'(t) =# 0 for 
all t E I.) Following [1], we say that a has a reflection property with foci F, and F2 
if, for each point P e a(I), the following conditions hold: 
(i) Any vector normal to the curve a at P lies in the span of the vectors FH P and 

F2 P. 

'Projective geometry is not used in this article. We refer interested readers to [6] or [5] for a gentle, 
non-axiomatic introduction to the subject. For a projective geometry interpretation of the focal properties of 
conics, see [7]. 
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(ii) The line normal to a at P bisects one of the pairs of opposite angles formed by 
the intersection of the lines joining F1 and F2 to P. 

If F1 is a point at infinity, we take FvP to be any nonzero vector parallel to the line 
joining P to F1, and similarly for F2. Condition (i) is vacuous unless F1, F2, and P lie 
on the same line; in this case, (i) says that a is orthogonal to that line at P. (This 
occurs, for example, when F1 = F2, but not when a is part of the line through a pair 
of distinct foci.) 

Now let ca be as above, and let F1 and F2 be distinct points in P2 \ a(I). At each 
point P = a(t) along a, we set rk(t) = FkP and uk(t) = rk(t)/IIrk(t)JJ, k = 1, 2. The 
vector-valued functions rk and Uk describe, respectively, the position vectors from Fk 
to points along a and the corresponding unit vectors. 

We say that a is a positive (resp. negative) reflector with foci F1, F2 if, for all 
t e I, (i) holds and uP(t) + u2(t) (resp. u(t) - u2(t)) is normal to a. Figures 1 and 2 
illustrate these reflection properties for finite foci. It follows from (ii) and the 
smoothness of our curves that every curve having a reflection property with distinct 
foci F1, F2 must be a positive or negative reflector with foci F1, F2. Conversely, every 
positive or negative reflector with distinct foci F1 and F2 has a reflection property 
with the same foci. (Condition (i) is used here to handle cases in which ul = ?u2.) 
Thus a curve a that satisfies (i) will also satisfy (ii) * either [u1(t) + u2(t)] a '(t) = 0 
for all t e I or [UP(t)-U2(t)] * a'(t) =O for all t e I. 

uP(t) + u2(t) 

Uo(t) b 

\ / \ Ul~u (t) 

F, {F 

FIGURE 1 
A po Ative reflector a with distinct finite foci F1, F2. 

A well-known orthogonality property of conics now follows easily: 

A po.sitive and a negative reflector having the same (distinct) foci are 
orthogonal at all points of intersection. 

To see why, let a - and ac be two such reflectors and let P be any point of 
intersection. Then the unit position vectors U1 and U2 at P are the same for both 
curves. Now U1 + U2 is orthogonal to a+ at P, U1 - U2 is orthogonal to a_ at P, 
and U1 + U2 is orthogonal to U1 - U2 since (U1 + U2) (U1 - U2) = IIU 1112 - I1U2112 - 
1 - 13 0. Thus a+ and a are orthogonal at P, as claimed. 
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u2(t) 

F1 ~ ~ ~ ~ ~ ~ - u2(t)~~~~~ult 

F, 00 
ult -3)-, (t) 

a 

FIGURE 2 
A negative reflector a with distinct finite foci F1, F2. 

We now proceed, through several cases, to classify all curves with reflection 
properties. 

Case 1: F1 and F2 are distinct and finite. Condition (ii) holds if and only if 
[u1(t) ? u2(t)b* a '(t) = 0 for all t e I; the sign is positive or negative according to 
whether a is a positive or negative reflector. Since rk(t) = Fk P= a(t) - Fk, we see 
that r'(t) = a '(t), and 

= rk(t) .4(t) rk(t) -a '(t) 
IIrk( t)II =k1 k___ _ _ t_ __ _ a__ __ _t__ __ Vr('=[rk(t) rk(tT ] 

rk(t) rk(t) - llkr(t)I U 

(1) 

Therefore, 

(ii) holds [jjrl(t) jj |jr2(t)jf'= 0 for all t e I 

Iri( t)I?11 r2(t)II=c foralltEI, caconstant 
d(P,F1) d(P,F2) =c forall Pea(I), (2) 

where d(P, Fk) denotes the distance from P to Fk. 
With a " + " sign, (2) describes an ellipse if c > d(Fl, F2), the line segment F1 F2 if 

c = d(F1, F2), and the empty set otherwise. With a "-" sign, equation (2) describes 
one branch of a hyperbola if 0 < Icl < d(Fl, F2), a straight line (the perpendicular 
bisector of F1F2) if c = 0, and a ray from one focus in the direction opposite the other 
focus if Ic = d(Fl, F2). Notice that condition (i) rules out both F1 F2 and the ray, since 
all their points are collinear with F1 and F2. Condition (i) does not, however, rule out 
the perpendicular bisector. We conclude, therefore, that if a is a positive reflector, 
then it is part of an ellipse; if a is a negative reflector, it is part of a hyperbola or a 
straight line. By the italicized remark above, an ellipse is orthogonal to any hyperbola 
with the same foci, as well as to the perpendicular bisector of the line segment joining 
the foci. 
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Case 2: F1 is finite and F2 is a point at infinity. Let F2 = 1* and let u be a unit 
vector parallel to 1. Then u2(t) = u for all t, and, using (1), 

(ii) holds,* [ul( t) ?u] a '( t) = 
O for all t E- I 

11 rl(t) ? rl(t) u]f =O for all t eI 

|Irl(t) II rl(t) u = c for all t E I, c a constant 
d((P,F1) +e(P-F1) u=c forall Pea(I) and = 1. (3) 

Suppose that e= +1 in (3). Since K(P-F1) ul<IIP-F 11=d(P, F), (3) has 
solutions P only when c 2 0. If c = 0, then solutions P must satisfy (P - F1) u = 
-d(P, F1) < 0, so they must lie on the open ray from F1 in the direction of - u. 
Condition (i) rules out this possibility, so we must have c > 0. Then solutions P satisfy 

d(P,Fj) = ((F1 +cu)-P) u. (4+) 
Let 1+ be the line through the point F1 + cu orthogonal to u. Since F1 0 a(I), the 
right-hand side of (4+) must be positive, which means that solutions P must lie on the 
side of 1+ in the direction of-u. (See Figure 3a.) Thus (4+) says that d(P, F1) = 
d(P, 1+). This condition describes a parabola with focus F1 and directrix 1+; the 
vertex is at F1 + 1cu and the parabola opens in the direction of - u. 

F, F, +cu F1-cu F( 

1+ 
FIGURE 3a. FIGURE 3b. 

The analysis is similar when e= -1; c > 0 and the solutions satisfy 
d(P, F1) =(P-(F1-cu)).u. (4_) 

This condition describes the parabola with focus F1 and directrix 1_, the line through 
F1 - cu orthogonal to u. The vertex is at F1 - cu and the parabola opens in the 
direction of u. (See Figure 3b.) 

As c ranges through positive values, we obtain two families of parabolas, one for 
each of e = ? 1. All these parabolas share the same foci, so any two parabolas, one 
from each family, intersect orthogonally. Note, however, that u was only required to 
be parallel to 1; its direction was arbitrary. Choosing - u instead of u interchanges the 
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two families of parabolas. Thus, in this case, positive and negative reflectors are not 
qualitatively different. 

Case 3: F1 and F2 are distinct points at infinity. Write F1 = 1* and F2 = 1* and let 
ul and u2 be unit vectors parallel to 11 and 12 respectively. Here, condition (i) is 
vacuous. As in earlier cases, a'(t) (u1 + EU2)= O for all t, where e= ?1. Thus 
a(t) (u1+su2)=c for some constant c. Equivalently, {a(t)-c(u1+eu2)/ 
l1ul + 6u2112} (ul + su2) = 0 for all t. It follows that a is part of the straight line 
that is ortiogonal to ul + eu2 (i.e., parallel to ul - eu2) and passes through the 
point c(ul + su2)/11u1 + eu2112. As c ranges through real values, we obtain two 
families of straight lines: for e = 1, a family of positive reflectors, orthogonal to 
u1 + U2; and for e = -1, a family of negative reflectors, orthogonal to u1 - u2. As 
usual, the two families intersect orthogonally. 

Case 4: F1 and F2 are finite and equal. When F1 = F2, condition (i) says that at 
each point P = a(t), a is normal to the line through P and F1; i.e., 
a'(t) (a(t) - F1) = 0 for all t E I. But 

a'(t) (a(t) -F1)=O for all t [(a(t) -F1) * (a(t) -F1)]'= O for all t 

1 |a (t) -F1 j2 = c for all t, 

for a constant c. Since a(I) contains more than one point, c must be positive; thus a 
is part of the circle of radius v'c centered at F1. 

Case 5: F1 and F2 are the same point at infinity. Let F1 = F2 = 1*, and let u be a 
unit vector parallel to 1. Then by (i), a '(t) . u = 0 for all t E I, so a(t) . u = c for all t, 
where c is a constant. Equivalently, (al(t) - cu) . u = 0 for all t; i.e., a is part of the 
straight line through the point cu, orthogonal to u. 

We have shown that a curve a with a reflection property must be part of an ellipse, 
hyperbola, parabola, circle, or straight line. Working backwards through the argu- 
ments shows that, conversely, each of these curves has a reflection property. We 
summarize our results in a theorem. 

THEOREM. A smooth connected plane curve has a reflection property if and only if 
it is part of an ellipse, hyperbola, parabola, circle, or straight line. 

A fixed pair offoci deternines a family of curves with reflection properties. Positive 
and negative reflectors with the same distinct foci are orthogonal. The following table 
summarizes the classification: 

Distinct foci Both finite One finite, one infinite Both infinite 

Positive reflectors: confocal ellpses confocal parabolas parallel Ines 

Negative reflectors: confocal hyperbolas confocal parabolas parallel lines 
and the 

perpendicular bisector 
of the line segment 

joining the foci 

Equal foci Finite Infinite 

concentric circles parallel lines 
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Figure 4 depicts a pair of distinct finite foci and the orthogonal families they 
determine; Figure 5 shows families of parabolas that arise from distinct foci when only 
one focus is finite. 

FIGURE 4 FIGURE 5 
Confocal ellipses and hyperbolas Confocal parabolas 

Note. The heart of the classification is the observation that condition (ii) is equivalent 
to relation (2) in Case 1 and to relations (4+) and (4_) in Case 2. That part of the 
argument is essentially a bidirectional version of the calculations in [41, which used 
differentials. The classification argument is simpler than that in [1] because it uses the 
reflection property to obtain the defining focal properties of the conic sections, rather 
than to obtain their equations in a particular coordinate system. 

Surfaces with Reflection Properties 

The notion of a reflection property for curves extends in a natural way to surfaces in 
R' (indeed, to hypersurfaces in Rn, n 2 3, though we leave that as an exercise for the 
interested reader). 

A smooth connected surface Y in R 3 is said to have a reflection property if there 
are points F1, F2 (called foci) in l3 \5 such that, for each point P in 5, 

(i) any vector normal to Y at P lies in the span of the vectors aP and iP; and 
(ii) the normal line to Y at P bisects one of the pairs of opposite angles formed by 

the intersection of the lines joining P to F1 and F2. 
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If F is a focus at infinity, then we take FP to be any nonzero vector parallel to the line 
joining P to F. If F1, F2, and P lie on a line, then by (i), that line is normal to Y at 
P, and (ii) adds no more information. Otherwise (i) follows from (ii). 

Since (i) and (ii) are local conditions, we lose no generality by assuming that 5 is a 
parametrized surface; i.e., that 2= crv(), where a: W -+ R3 is a smooth regular map 
from an open subset FY of R2 onto Y in R3. "Regular" means that at each point 
P = a-(u0, vo) of the surface, the tangent vectors ducT(u0, v0) = (dor/du)(u0, v0) and 
d, a(u0, vo) = ( do/dvXu0, vo) are linearly independent and thus span the tangent 
plane to 5" at P. 

For brevity, we denote typical points of W and Y by p and P = a( p). As before, 
we set rk( p) = Fk P and Uk( p) = rk( p)/IIrk( p)II for k = 1, 2, using them to define 
positive and negative reflectors. If F1 and F2 are distinct, then a surface Y has a 
reflection property with foci F1 and F2 if and only if it is a positive or negative 
reflector with those foci. 

Suppose Y has a reflection property with distinct foci. When both foci are finite, 
the analogue of (1) is the pair of relations 

d0" 11rk ( p) || = Uk ( p) *O a .( P), d|rk ( p) ||=Uk ( p) "O a( p) (5) 

Since 5" is a positive or negative reflector, these relations imply that 

c"Jrl((p)II ?11r2(p)III = [Ul(p) ?U2(P)I du(TP) =0 

and 

dV[1rl( p) ?+1r2( p)II = [U( p) ?U2( P)I (do P) = 0. 

(Choose the appropriate sign.) Hence 11r,( p)II ? J1r2( p)II is constant as a function of p; 
this means that every plane cross-section of Y passing through the foci is the same 
curve having a reflection property with foci F1, F2. Thus 5 is part of an ellipsoid of 
revolution for a positive reflector; for a negative reflector, Y is part of a hyperboloid 
of revolution or part of the plane that is the perpendicular bisector of the line segment 
joining the foci. Similar reasoning shows that with one finite focus and one focus at 
infinity, Y is part of a paraboloid of revolution. With both foci at infinity, Y is part of 
a plane. 

When Y has a reflection property with equal finite foci, (i) says that r1( p) is 
normal to Y for each p E W. This says that dr1( p) * r1( p) = dvr1( p) * r1( p) = 0 for 
all p, so d6,(Ilrl( p)112) = d0(Ilrl1 p)112) = 0 for all p. It follows that 11r1(p)ll is constant 
as a function of p, so Y is part of a sphere centered at F1. 

Finally, if 5" has a reflection property with equal foci 1* at infinity, we let u be a 
unit vector parallel to I and, proceeding as in Case 5, find that Y is part of a plane 
orthogonal to u. To summarize: 

THEOREM. A smooth connected surface has a reflection property if and only if it is 
part of an ellipsoid of revolution, a hyperboloid of revolution, a paraboloid of 
revolution, a sphere, or a plane. 

A fixed pair of foci determines a family of surfaces with reflection properties. 
Positive and negative reflectors with the same distinct foci are orthogonal. The 
following table sumnarizes the classification. 
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Distinct foci Both finite One finite, one infinite Both infinite 

Positive reflectors: confocal ellipsoids confocal paraboloids parallel planes 

Negative reflectors: confocal hyperboloids confocal paraboloids parallel planes 
and the plane 

perpendicular bisector 
of the line segment 

joining the foci 

Equal foci Finite Infinite 

concentric spheres parallel planes 

The general result for hypersurfaces in RF8n can be found in [2] (see also [3]) or [8], 
but with different proofs. 

Acknowledgement. The authors independently submitted different versions of this classification proof at 
about the same time. We wish to acknowledge that Harley Flanders sent yet another version of this proof to 
the first author only about a month later. When three mathematicians have the same idea at about the same 
time, it is not just a coincidence. Perhaps it means that this is the "right" way to do the classification. 
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NOTES 

A Parenthetical Note (to a Paper of Guy) 
MARK KRUSEMEYER 

Carleton College 
Northfield, MN 55057 

Guess my number 1,2,5,14,.... What is the next number in this sequence? Of 
course such questions have no logical validity, even if they do persist on tests 
purporting to measure mathematical skill or aptitude. But in defense of such questions 
it can be argued that they often seize the eye and the imagination-and that when the 
terms of the sequence are generated by some specific procedure, the pattern-finding 
needed to predict future terms can be an important mathematical activity. 

Back to 1,2,5,14, .... To an alert middle school student, the next number is surely 
41, since each term shown can be found from the previous one by multiplying by 3, 
then subtracting 1. Extending the sequence in this way gives us M1458 in Sloane and 
Plouffe's Encyclopedia [5]: the n-th term is (0 1+ 1). 

Sloane and Plouffe list thirteen other sequences that start either with the same four 
terms, or with an extra 1 at the beginning for lagniappe. One example is the 
stamp-folding sequence M1455: 1,1,2,5,14,38,.... The n-th term of this sequence 
gives the number of ways to take a strip of n ungummed, blank stamps (so you can't 
tell left from right, top from bottom, or front from back) and fold it so that all n 
stamps end up on top of each other. Although the sixth term was cited as 39 in [1] on 
the authority of Table 4 of [2], the rest of that table and Koehler's Theorem 3.4 show 
that 39 was a misprint. 

A professional guess To professional mathematicians, the best-known sequence 
starting 1, 2, 5,14, . .. is M1459 in [5], which consists of the Catalan numbers 

1 12n cn n +1 n. 

This sequence and several of its "start-alikes" figure prominently in Richard Guy's 
delightful article on the Second Strong Law (or, if you prefer, second delightful article 
on the Strong Law) of Small Numbers [1]. In particular, Guy mentions two ways of 
associating the Catalan numbers with parenthesization. The purpose of this note is to 
point out a direct connection between those two ways. 

The first "manifestation" of c. is as the number of possible interpretations of a 
non-associative product of n + 1 letters. Computing such a product involves carrying 
out n multiplications, so in principle n pairs of parentheses are needed, but in 
practice the outer pair is left off and only n - 1 pairs are displayed. For example, the 
product abcde can be interpreted as (ab)(c(de)), as (((ab)c)d)e, or in any of twelve 
other ways, so C4 = 14. When Catalan numbers are mentioned in textbooks on 
combinatorics, it is often in this context; see, e.g., [3], Section 5.4.2. We will call a 
parenthesization of a product of n + 1 letters a bracketing and denote the set of all 
such bracketings by B,,. To try to avoid confusion with the other type of parenthesiza- 
tion (which is about to be discussed), we will use "floor" symbols rather than 
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parentheses when writing bracketings. For instance, we will write 

B3 = {LaLbcI Id, LLabIcId, Lab] LcdI, aLbLcd]I, aLLbcjdI) 

for the set of bracketings whose elements are counted by C3 = 5. Note that the actual 
choice of letters is immaterial; LrLatI Is should be considered the same bracketing as 
LaLbc] Id. 

The other "manifestation" of cn is not as common in the literature. It can be found 
in [6], and it appears to have originated with Conway and Guy. They observed that c. 
is the number of ways to arrange n pairs of empty parentheses, subject only to the 
restriction that no closing parenthesis can precede the corresponding opening one. 
For example, ( ) ) ( is an ineligible way to arrange two pairs of parentheses, because 
the second closing parenthesis comes too early. We will call an arrangement of pairs 
of parentheses in which no closing parenthesis precedes the corresponding opening 
one a CG-arrangement; the set of all such arrangements of n pairs will be denoted by 
CGC. When writing CG-arrangements, we will use "ceiling" symbols rather than 
parentheses. For instance, 

CG3 = {[[1111, M 1[11, 11, 11, 11} 

(For a recent proof starting from all (2n) ways to arrange n pairs of parentheses that 
CGn has exactly c. elements, see [4].) 

Now for the connection It is not immediately clear that there is any connection 
between bracketings and CG-arrangements. If we simply omit the letters from a 
bracketing, we lose far too much information; for instance, the five bracketings in B3 
yield L L I (four times) and L I L I (once). If we consider symmetry, we see that of the 
bracketings in B3, only Lab] Lcd] is its own reflection, whereas of the arrangements in 
CG3, [ [ [ 111, [[ 1 [II 1, and [1 [ 1 [ 1 are all symmetrical. Thus Guy suggested in [1] that 
one was "unlikely... [to] find a direct combinatorial comparison." 

However, we will see that there is a natural, recursive way to define a 1-1 
correspondence between CG-arrangements and bracketings. We will also see that this 
correspondence does, indeed, "break symmetry." 

The following idea is at the heart of the recursive definition. (After the first draft of 
this note was written, I found the same basic idea in the discussion on p. 43 of [7], 
another source for the second manifestation of c..) Given a CG-arrangement a, we 
define the break point of a to be the first point after the beginning of a , reading 
from left to right, where every pair of parentheses that has been opened has been 
closed again. For example, in each case shown below, the break point occurs at the 
arrow: 

[1 [[1 1 

Note that the break point may be at the very end of a. Since the break point is 
never at the beginning of a and since the parentheses to either side of the break 
point are balanced, there are CG-arrangements 83 and y such that a is of the form 
[ l1y, with the break point immediately before y. For instance, in the cases shown 
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above we have 

,3=O,y=[[ll and 

13 = f 1 1, y = [1 [ 1, respectively. 
(There is one exception: If a= 0, the break point is undefined, and of course a is 
then not of the form [P 1 y.) 

Note that even without specifying the break point, 18 and y are uniquely deter- 
mined by a = [ , 1Py, for if 13 were to extend through the break point, at that point a 
parenthesis in 13 would be closed prematurely. 

Roughly speaking, the recursive way to map CG-arrangements to bracketings is to 
split each CG-arrangement at the break point, then to map each of the separate 
arrangements 13 and y such that a = [ P1ly to a bracketing, and finally to "reassem- 
ble" those bracketings. We will now make this precise by defining 1-1 correspon- 
dences F.: CG- B. for all n > 0. 

For n = 0, there is no problem: To the unique (empty) arrangement of no pair of 
parentheses, we associate the unique (invisible) bracketing of a single letter. For n > 0 
and a E CG., we have seen above that there is a unique way to write a = [ 8lS I- with 
13 E CGk,, y E CGn-k l , 0 < k < n. In defining Fj(a), we may assume by recursive 
hypothesis that Fk( 13) and F. - k- (y) are already defined. This allows us to form the 
bracketing 

F,(a) = [Fk( ,3)] [ Fn-k-l (MY)] 
of (k + 1) + (n - k) = n + 1 letters. (If k = or k = n - 1, the "extra" floor symbols 
around Fk( 13) or F-k_l(y), respectively, should be omitted.) 

As an example, let's find F5(Ca), where a is the CG-arrangement [[1 [1T [[11. The 
break point is indicated by the arrow, and we have a = F [ 1y with 1 = [ 1F 1, y= [[ 1. 
These arrangements, in turn, break up as 13 = F 131p2 with 81 =0, 12= and 
Y=FYlIY2 with Y1=[l, y2=0. Finally, 12= y=[l breaks up as [81e with 
8= e= 0. Therefore, we have 

F1( 12) = Fl(yl) = FO(8)FO(e) = ab; 

F2( ,1) = Fo( ,31)LFl( ,32)] = aLbcl 

(remember that the actual letters are immaterial to the bracketing!); 

F2(y) = [Fl(yl)1FO(y2) = LabIc; 

F5(a) = LF2( 13)]LF2(y)] = LaLbc] I LldeJf1. 

So to the CG-arrangement a = [[ 1 [ 11 [F[ 11 corresponds the bracketing Ma[bcJ I [[deIf I. 
Note that this is a symmetrical bracketing, even though there is no apparent symmetry 
to a. 

We can use induction on n to show that the F,, are 1-1 correspondences; here is an 
outline of the proof. The basis step, for n = 0, is clear, so we can assume that F. is a 
1-1 correspondence for each n < N. Now note that any bracketing fl E BN can be 
written uniquely in one (and only one) of the following three forms: atl1, with 
(DE BN-1; [LhIa, with (D E BN-1; [JL'IJ], with 'D EBk, E BN-k-L for some 
k <N. In the first case, since FN-l is a 1-1 correspondence, there is a unique 
p E CGN-l with FN_1(P) = D; we then have FN(F[p)=a=aLPj. Similarly, in the 
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second case we have FN([lpl) = [IJa, where once again FN1( p) = (D. Finally, in the 
third case there are unique so E CGk, f E CGNk with Fk( p) = (, FNk1( I) = I 
and we then have FN([q1(p4r) = [(J]L'I'. So FN is onto, and from the uniqueness of so, 
qf in the various cases above we soon see that FN is one-to-one as well. 

The following table shows the correspondence F4. That is, in each row the 
bracketing is the image under F4 of the CG-arrangement. 

CG-arrangement Bracketing CG-arrangement Bracketing 

[[[[1111 [ [abicidJe [[1[11[1 [a[bc] I [deJ 

[[[rll[1 [[abJcJ[deJ [1[[1[11 a[[b[cd]J]e 

[1 [[[111 a[[[bcJdJeJ [[11[1[1 [abJ[c[deJJ 

[[[1 [111 [[a[bcJJdJe [1[[11[1 a[[bcJ[deJJ 

[[[1l [11 [[abJ[cdJJe [1[1[[11 a[b[[cdJeJJ 

[[1[[111 [a[[bcJdJJe [[1[1[11 [a[b[cdJJJe 

[[11[[11 [abJ[[cdJeJ [1[1[1[1 a[ bc[deJJI 
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Math Bite: 
Recitation of Large Primes 

What is the largest prime for which you can recite all digits? Is it the Mersenne prime 
8191, or the last prime-numbered year of the twentieth century (1999), or the Fermat 
prime 65537? The largest known repunit prime, which is the fifth of its kind, 
represents a case for easy memorization. With virtually no effort, all 1031 of its digits 
(each of which is 1) can be recited. 

RICHARD L. FRANCIS 

SOUTHEAST MISSOURI STATE UNIVERSITY 

CAPE GIRARDEAU, MO 63701 
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On Systems of Linear 
Diophantine Equations 

FELIX LAZEBNIK 
University of Delaware 

Newark, DE 19716 

Introduction Something happened to me recently I would wager has happened to 
many who read this note. Teaching a new topic, you cannot understand one of the 
proofs. Your first attempt to fill the gap fails. You look through your books for an 
answer. Next, you ask colleagues, go to the library, maybe even use the interlibrary 
loan. All in vain. Then it strikes you that, in fact, you cannot answer an even more 
basic and seemingly more interesting question. You peruse the books again. They 
seem to have answers to thousands of strange questions, but not to yours (the most 
natural one!). At the same time you cannot believe that your question could have been 
overlooked by generations of mathematicians. Days pass; the agony continues. 

Then one day, some way or other, you find the answer. In my case the answer was 
in a book I already owned. It followed from a theorem I had known for a long time, 
but I had never thought of this particular application. I must admit, indeed, that this 
theorem appeared in almost every book I had checked, but never with a pointer to 
this particular application, even as an exercise. Were the authors unaware of the 
application? Or did it seem too obvious to mention? In any case, here is the story. 

In my graduate combinatorics course, a proof of the existence of a design was based 
on the following question: Given a system of linear equations Ax = b, where 
A = (a. ) is an m X n matrix with integer entries, and b is an m x 1 column vector 
with integer components, does the system have an integer solution, i.e. an n X 1 
solution vector x with integer components? The suggested method ([7], Th. 15.6.5) 
makes use of "a well-known theorem of van der Waerden": 

THEOREM (van der Waerden). An integer solution of the system exists if and only 
if, for every row vector v with rational components such that vA has integer 
components, vb is an integer. 

I had never seen this theorem, and I was surprised that such a criterion could be 
useful (which it was!). In trying to prove the theorem, I realized that I did not know 
any good method for resolving a more basic question: 

How can one tell whether a system of linear diophantine equations has a 
solution? If solutions exist, how can one find any or all of them? (*) 

I could not find this question in any of at least 30 modem texts on abstract algebra 
or number theory. The place I found it at last was the classical text of van der 
Waerden [14, Exercise 12.3]. Not for the first time this book contained an answer that 
I could not find in more recent sources-why hadn't I started with it? (Interestingly, 
the book contains very few exercises, but this one was there.) 

The theory behind the solution is closely related to the famous structure theorem 
for finitely generated abelian groups, or, more generally, for finitely generated 
modules over principal ideal domains. Various proofs can be found in many books on 
abstract algebra, e.g., see [8]. We present a matrix version of the theorem. Let Z 
denote the ring of integers, Mm, Z), 1 < m < n, the ring of all integer m X n 
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matrices, SLk(Z) the set of all square k x k matrices with integer entries and 
determinant 1 or -1 (unimodular matrices). By D = diag(dl, d2,. .., djE) E Mm ,(L) 
we denote the diagonal matrix that has an integer d, in the (i, i) entry, i = 1, ... , ml 
and zeros elsewhere. Then we have: 

THEOREM 1. Let A E Mm, n There exist L E SLm(7Z) and R E SLn(Z) such that 

LAR=D=diag(dl,d2,..., ds, 0...,0), 

where di > 0,i=1,. . .,s, and dildid+, i = 1,..., s - 1. 

A proof can be found, e.g., in [14] or [8]. The idea is to use elementary operations 
of rows and columns of A. Matrices L and R correspond to compositions of these 
operations. Though matrices L and R in Theorem 1 may vary, the matrix D is 
uniquely defined by A and it is called the Smith normal form of A. 

Let us note immediately that Theorem 1 can be used to answer question (*). Given 
Ax = b, rewrite it as Dy= c with Ry= x, LAR = D and c = Lb. But the solution to 
the diagonal system Dy = c is easy. More details and a numerical example are given 
in the Applications section of this paper. 

The question of finding an efficient algorithm for computing the Smith normal form 
of an integer matrix is not trivial. It is not clear that the direct application of 
elementary operations of rows and columns leads to a polynomial-time algorithm: it is 
conceivable that the integers get too large. For more details, see [11] and [3]. 

Some history Theorem 1 has an interesting history: Question (*) seems not to have 
been asked, in full generality, until the mid-19th century. Its particular cases appeared 
in 1849-1850 in some number-theoretical studies of Hermite [10, p. 164, p. 265]. In 
1858, Heger [9] formulated conditions for the solvability of Ax = b in the case where 
A has full rank (i.e., m) over Z. In 1861, the problem was solved in full generality by 
H. J. S. Smith [12]. Theorem 1 appeared in a form close to the one above in an 1868 
treatise by Frobenius [5] who generalized Heger's theorem [5, pp. 171-173], and 
emphasized the unimodularity of the transformations [5, pp. 194-196]. 

By then many important results on abelian groups had been discovered. Introduced 
by Gauss, the concept of an abelian group was developed both in number-theoretical 
studies of Gauss, Schering, Kronecker, and Dirichlet, and in the studies of elliptic 
functions and abelian integrals of Gauss, Abel, and Jacobi. Not until 1879 did 
Frobenius and Stickelberger [6] discover and use explicitly the connection between 
the theory of finitely generated abelian groups and Smith's theorem. In the same year, 
Frobenius showed that Smith's theory (extended to matrices over polynomial rings) 
could be used to classify square matrices over fields, up to similarity. (For further 
history, see [4] and the Historical Notes in [2].) The story reminds us, in particular, 
that many basic notions and facts of linear algebra (including module theory) were 
developed within the context of number theory. 

Applications Our first application is related to question (*). It also contains a proof 
of the aforementioned theorem of van der Waerden. Let Q denote the field of 
rational numbers. 

PROPOSITION 2. Let A, L, R, D be as in Theorem 1, b E Z" and c = Lb. Then the 
following four statements are equivalent: 

(1) The system of linear equations Ax = b has an integer solution 
(2) The system of linear equations Dy = c has an integer solution 
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(3) For every rational vector u such that u A is an integer vector, the number ub is 
an integer 

(4) For every rational vector v such that vD is an integer vector, the number vc is 
an integer. 

Proof. (1) (2): Indeed, Ax=b (L-'DR-')x=b b D(R-lx)=c Dy=c, 
where y = R'x. Since R E SLrn(Z), then R' EG SLm(ZZ). Therefore x E Z7n . y= 
R-lx E En. 

(3) (4): Indeed, vD E Z7n v(LAR) E Z7n (vL)AR E Z7n (vL)A E znR- 
7Zn/ u A E Zn7, where u = vL. L E SLn(Z7), then u E Q' C v E Ql m, and, by (3), 

ub E Z. But ub E Z * (vLXL- 1 c) E Z o*vc E= Z. Therefore (3) implies (4). Revers- 
ing the order of the argument, we get u A E Zn * vD E Z7n and vc E Z * ub E 7Z. 
Therefore (4) implies (3). 

(2) (4): Dy = c implies v(Dy) = vc for every v E Qm, hence (vD)y = vc. If 
vD E Z", then vc e 7. Thus (2) implies (4). In order to prove that (4) implies (2), first 
we observe that c=(ci,..., c5O0,...,0). For suppose c30O, j>s. Consider v= 
(O, 0, 1/(2cj), 0, . . ., 0) where 1/(2cj) appears in the j-th position. Since vD = 0 
E Z7n, then by (4) vc = 1/2 eE 7, and we arrive at a contradiction. Thus c; = 0 for 

j > s. Next, for i = 1,... , s, we consider vectors v; = (O,.. ., 0, l/d2, O,... , 0). Since 
viD E Zn, then by (4), vi c E Z and hence c/di E Z. Let y= (y1, Ys.,,O ...,O), 
where yi=ci/di, i = ,...,s. Thenye"Z', and Dy=c. X 

With notations as in Proposition 2, one can reduce the solution of the system 
Ax = b to a solution of Dy = c by performing elementary transformations (over 7) of 
rows and columns of matrix A augmented by vector b. Matrices L and R can be 
constructed by multiplying matrices corresponding to these transformations. System 
Dy = c has a solution if and only if c,+l = *- = cm = 0, and dilci for i = 1,.. ., s. A 
general solution of Dy =c can be given in the form y = (y1,. . . y, t1 ... tms), 
where yi = cdi, i = 1,.. ., s, and t1,. . . , tm_- are free integer parameteTs. Then the 
general solution of Ax = b is just Ry. Clearly, we may assume that each equation is 
reduced by the greatest common divisor of the coefficients of the variables. 

EXAMPLE. Solve the system of diophantine equations Ax = b, where 

A = ( 2 6) 4 x= (X2), and b 17 

Solution. Consider a sequence of elementary transformations of rows and columns 
of A. It is well known that they can be achieved by multiplying A by unimodular 
matrices. Let us represent the transformation of rows by 2 X 2 matrices Li and the 
ones of columns by 3 X 3 matrices Rj, where the lower indices reflect the order of 
multiplications. We consider the following transformations (matrices): 

0o 8) R2 ( -2 0) (I= 0 4 1 
Ri=| O 0 0 R2= 0 1 0 , R3=|O 1 0l 
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Let L=L4 and R=R1R2R3R5R6. Then 

D LA (-2 1 ) -5 2 6 )l0 -5 -91 
) 

and c = Lb =(47- 

Solving Dy = c, and taking x = Ry, we get 

0O 1 2 17 -47+2t1 
x= 1 18 32 -47 = -829+32t1 ,tEV Z 

0 -5 -9) t, 235 - 9t1 

and the problem is solved. 

Another application is concerned with a special instance of the following fundamen- 
tal question in number theory. Let Z[x1,..., xj] denote the ring of polynomials in t 
variables with integral coefficients, and let F(x) E [ x1, . . ., xt] . It is clear that if the 
equation F(x) = 0 has an integer solution, then for any integer n 2 1, the congruence 
F(x) 0 (mod n) has a solution. The converse, in general, is false, even for the case of 
one variable. A simple counterexample is provided by F(x) = (2 x + 1)(3x + 1). To 
show that (2 x + 1)(3x + 1) 0 (mod n) has a solution, write n in the form n = 2'3bm 
where gcd(m, 2) = gcd(m, 3) = 1, and a and b are nonnegative integers. Then use the 
Chinese Remainder Theorem. For more on the relation between congruences and 
equations see, e.g., [1]. Nevertheless the following is valid. 

PROPOSITION 3. Let A E Mm, n(Z), and b E Zn. Then the system of linear equations 
Ax = b has an integer solution if and only if the corresponding system of congruences 
Ax b (mod n) has a solution for every positive integer n. 

Proof. Obviously, the first statement implies the second. Suppose the system of 
congruences has a solution for every positive integer n. Let L, R, D, y and c be as in 
Proposition 2, and let N E Z be such that the transition from Ax = b to Dy = c uses 
integers with absolute values smaller than N. Then for every n 2 N, Ax b (mod n) 

Dy c (mod n) di yi ci (mod n), i = 1. s. The latter system of congru- 
ences is solvable in particular when n is a multiple of d,. Since di Id, for every i, 
1 < i < s, this implies dil(di yi - ci), hence diIci for all i = 1, . . ., s. Therefore Dy = c 
has an integer solution, and so does Ax = b. N 

The following statement allows one easily to compute the index of a subgroup of the 
additive group Z", when the index is finite. 

PROPOSITION 4. Let f: Z n -Z t" be a ZZ-linear map and A E Mn, n(Z) be its matrix 
with respect to some choice of bases. Suppose A has rank n. Then the index off(7Zn) in 
7n is equal to Idet Al. 

Proof. By Theorem 1 we can find two unimodular matrices L and R such that 
LAR=D= diag(dl,d2,...,dd) Since A is of rank n, all di2 0. Therefore the 
abelian group f(Zn) _ d7Z @ d27Z @ @ dn, and the order of Zn/f(Zn) is 
d1d2 ... dnl = Idet Dl. Since L and R are unimodular, Idet DI = Idet Al. U 

EXAMPLE. Let f:Z2 _ Z2 be defined by f((x, y)) = (28x + 38y, 12x + 16y). 
Choosing both bases to be the standard basis Of 2,we get A= (38 16 . Therefore 
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the index [Z2: f(Z2)] is equal to Idet Al= 8. The Smith normal form of A is 
D = 2)0 I hence f(Z) = 2 2 4Z. 

Our next application is related to Proposition 4. It deals with some basic notions of 
the geometric number theory. Let R denote the field of real numbers, and S = 
{SI,... , sm) be a linearly independent set of vectors in R'. The additive subgroup 
L = (S> of Rn generated by S is called the lattice generated by S. A fundamental 
donain T = T(S) of the lattice L is defined as 

T=( E xis: 0 < xi < 1, xiE R} 

The volume v(T) of T is defined in the usual way, as the square root of the absolute 
value of the determinant of an m x m matrix whose i-th row is the coordinate vector 
of si in the standard basis. Though T itself depends on a particular set of generators 
of L, the volume of T does not! 

PROPOSITION 5. Let S = {sl,.... Sm) and U= {ul,... ,uj be two sets of linearly 
independent vectors which generate the same lattice L. Then m = t and v(T(S)) = 
v(T(U)). 

Proof We leave it to the reader. In case of difficulties, look through [13, pp. 30-33 
and pp. 168-1691. l 

If one considers A with entries from a field, then by elementary operations of rows 
and columns, A can be brought to a diagonal form. It is a trivial exercise to check that 
an elementary row (column) operation preserves the dimensions of both row and 
column spaces of A. Therefore matrices LAR and A have equal dimensions of their 
row spaces and equal dimensions of their column spaces. Since the dimensions of row 
space and column space for a diagonal matrix are equal, we have a proof of the 
following fundamental result. 

PROPOSITION6. The dimension ofthe row space of a matrix with entriesfrom afield 
is equal to the dimension of its column space. a 
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The Golden Ratio is Less Than 7T2/6 

JAMES D. HARPER 
Central Washington University 

Ellensburg, WA 98926 

As a mathematics teacher, I am pleased when an example turns out particularly neat 
and tidy. Occasionally, as a bonus, the example reveals an unexpected relationship. 
The relationship in the title of this note is not as unexpected or striking as, say, the 
implications of the Riemann hypothesis. Indeed, a hand-held calculator will convince 
anyone the statement is true. What is unexpected, beyond the serendipity of discover- 
ing this inequality as I worked out an example for a graduate analysis class, is that the 
proof centers on the Cauchy-Schwarz inequality. 

Algebraically, the golden ratio, 4, is the larger root of the equation xi - x = 1; 
numerically, 4 = (1 + v5 )/2 z 1.6180. The other number in the title is, as Euler 
discovered, the sum of the squares of the harmonic sequence: 1/12+1/22+ 
1/32 + .... 

Recall that the space of all square-summable real sequences is an inner product 
space with the usual "dot product": 

( xl, x2, X3,... -) *( Yl, Y2, Y3, ) Xl Yl + X2 Y2 + X3 Y3 + * 

The Cauchy-Schwarz inequality guarantees that this inner product exists: For all 
vectors X and Y, (X.y)2 < IIXIII Y1I12; equality occurs if and only if one vector is a 
scalar multiple of the other. 

My example begins with the harmonic sequence X = (1, 1/2,1/3,...) and its 
cousin Y = (1/2,1/3,1/4,. .. ). Both sequences are square-summable, with respec- 
tive sums S = 7r2/6 and S - 1. Now, by the Cauchy-Schwarz inequality, 

(00 1 2 

( E n(n + 
I 

) = I12 <11X11211y112 = S(S -1). 

The series on the left is the classic telescoping example, with sum 1. Therefore, 
12 < S(S - 1), and completing the square gives: 5/4 <(S - 1/2)2. The desired 
inequality: (1 + V5T)/2 < 7r2/6 now follows immediately. 

Another surprise is how close these two numbers are to each other; to four 
decimals, 4 = 1.6180 < 1.6449 = 7r2/6. Although our sequence vectors are not equal, 
they are "almost" equal in that the limit of the ratio of their terms is 1. 
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A Proof in the Spirit of Zeilberger 
of an Amazing Identity of Ramanujan 

M. D. HIRSCHHORN 
University of New South Wales 
Sydney 2052, NSW, Australia 

1. Introduction In a recent paper [1], I discussed the following statement, to be 
found in Ramanujan's lost notebook [2]: 

If 

E n 1 + 53x + 9x2 
nE0n 1 - 82x - 82X2+X3 n?O 

Ebxn 2 - 26x - 12X2 

n20n 1 - 82x - 82x2 +X3 

and 

n - 2 + 8x - 10x2 

n20 1 - 82x - 82X2 + X3' n?O 

then 

a. + bn = n + (-1) * (C) 

I proved this statement and showed how Ramanujan may have discovered it. In 
proving the statement I found explicit expressions for a., bn and c., and verified the 
conclusion (C). In this paper I show that in order to prove Ramanujan's statement it is 
sufficient to check just the first seven cases, and then I do so. This proof is in the spirit 
of Zeilberger [3]. 

2. Checking the first seven cases is sufficient Each of {a.}, {b.} and {cj) is 
generated by 

N(x) 
D(x) 

where 

D(x) = 1 - 82x - 82 x2 + X3 

= (1 - 83x +x2)(1 +X) 

= (1 - ax)(1 - }x)(1 - yx) 

with 

y= -1, a+P=83, ap=1 

(note that a, 13, and y are distinct) and where N(x) is a quadratic in x which 
depends on the sequence under consideration. 

It follows by the method of partial fractions that each of a., bn and cn can be 
written as a linear combination of an, 3P', and yf. (This was done explicitly in [1].) 
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So, each of a , bn3 and c3 can be written as a linear combination of the seven 
quantities 

a 3n 3n, (a 2y)n = ( a2)', ( 2y )n (P2)f 

(a 23)n = (ay2) 
n 

a", (ap,2)n = (p,y2)n = 13n 

and y3n = (aGy)) = (-1)n. 

Thus, each of {aW}, {bW}, and {cW) is generated by N(x)/D(x) where D(x) is the 
polynomial of degree seven, 

D(x) = (1- a3x)(l - 133x)(1 + a 2X)(1 + p2X)(1 - ax)(1 - Px)(1 +x) 

=1 + ... +X73 

and where N(x) is a polynomial of degree at most six, and depends on the sequence 
under consideration. 

It follows that 

E (an + bn3- C3 (1)n) xn = N( X) 
nn?O D(x) 

where N(x) is a polynomial of degree at most six, and where D(x) is as above. 
Let qn = an + b33 _ C 1)n, and suppose that N(x) = do + d1x + +d6X6. 

Then 

do+dlx+ +d6X6 
qnx- D( x) 

n?O 

Note that if qo = 0 then do = 0; if qo = 0 and q1 = 0 then do = 0 and d1 = 0, and 
so on, and if qo,..., q6 are all 0, then do,..., d6 are all 0, N(x) is the zero 
polynomial, and qn = 0 for all n. 

In other words, if (C) is true for n = 0, 1, ... ., 6, then (C) is true for all n.(!) 

3. Checking the first seven cases We have 

a3 + b 3- cg -1 = 13 + 23- 2 3-1 = 1 + 8-8-1 = 0 

a3l + b3 - c3+ 1 = 1353 + 138 - 1723 + 1 = 2460375 + 2628072 - 5088448 + 1= 0 

a32 + bW - c3 - 1 = 111613 + 114683 - 142583 - 1 
= 1390302566281 + 1508214295232 - 2898516861512 - 1 = 0 

a' + 3 _ C3 + 1 = 9262713 + 9516903 - 11832583 + 1 
= 794720108027000511 + 861958819711809000 

- 1656678927738809512 + 1 = 0 

a3+ b3 - c3 - 1 = 768692893 + 789788183 - 981961403 - 1 
= 454211987929190138384569 + 492642515740974509159432 

-946854503670164647544000 - 1 = 0 

a35 + bW - c3 + 1 = 63792247593 + 65542901883 - 81490963783 + 1 
= 259599416343366239908412677479 

+ 281563916123235899876883924672 
-541163332466602139785296602152 + 1 = 0 
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and 

a3 + b- - - 1 = 5293987856653 + 5439271068023 - 6762768032183 - 1 
= 148370931181877171204881827258954625 

+ 160924477506781393483609065194721608 
- 309295408688658564688490892453676232 - 1 = 0. 

Thus Ramanujan's statement is proved. 
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Proof Without Words: 
The Sum-Product Identities 

y 

(cos a, sin a( )1 3 

Xcs0 sin A) 

x 
-1 0 

0= a - 8 a+ j! 
2 ~ ' 2 

sin a+sin =S O a- A a + 3 
2 SCOS 2 Sif 2 

cos a + cos 13 a-,Co a + 
2 t=COS 2 2 

-SIDNEY H. KUNG 

JACKSONVILLE UNIVERSITY 
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Maximizing the Product of Summands; 
Minimizing the Sum of Factors 

EUGENE F. KRAUSE 
University of Michigan 

Ann Arbor, MI 48109-1003 

Introduction The spirit of the times urges all of us, at whatever level we teach, to 
promote mathematical investigation and exploration by our students. That being the 
case, it is particularly important for future teachers to have the experience of 
participating in mathematical research in at least one of their college courses. This 
paper outlines an extended investigation that was carried out, as a group project, by 
two classes of prospective secondary teachers. A good deal of instructor guidance was 
necessary, and many of the details of proof had to be skimmed over, but enough of 
the work was left to the students so that they had a sense of participating in the 
creation of new mathematical knowledge and of behaving like mathematicians. 

The first problem The problem that launched the project was brought to my 
attention by Professor Nic Heideman of Rhodes University, Grahamstown, South 
Africa. It is intended for 12-year-olds. 

Given a positive integer k, find positive integers x1, x2,..., x. that sum to 
k and have maximal product. 

For example, here are two failed choices for the xi in the case k = 14. 
14= 2 +3+4+5 - 23-45 = 120 
14 = 3 +3+2 +2 +2+2 32*24 = 144 

Further investigation of the case k = 14 leads to the formulation of some general 
principles: "Never use a 1." "Never use a number greater than 4." "A 4 can always be 
replaced by two 2s." "Two 3s are better than three 2s." And these principles, in turn, 
suggest a loosely framed algorithm: "Use as many threes as possible and make up the 
difference with twos." For school children the original problem can be viewed as 
solved at this point, but for college students there is still work to do. The whole matter 
of recasting the problem and its solution into mathematical language lies ahead. 

DEFINITION 1. Given a positive integer k. A partition of k is a collection of (not 
necessarily distinct) positive integers {x1, x2,..., xj such that Esn 1 x = k. A partition 
{x1, x2,..., X. of k is called a winning partition of k if Hl=1 xi 2 Hl=1 yi for any 
other partition {Y1, Y2, , Ym} of k. 

In view of Definition 1, the original problem is simply this: 

Problem 1. Given a positive integer k, find a winning partition of k. 
The algorithmic solution we arrived at earlier can now be recast in the form of a 

theorem. 

THEOREM 1. Every positive integer k > 1 has a winning partition. If we agree to 
replace any 4 by two 2s, then each k has a unique winning partition. The winning 
partitions are as follows: 
*If k 0 (mod3), then the winning partition of k consists of all 3s. The associated 
maximal product is 3k/3. 

This content downloaded from 143.207.2.50 on Mon, 29 Jul 2013 02:27:35 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 69, NO. 4, OCTOBER 1996 271 

*If k 1 (mod 3), then the winning partition of k consists of two 2s and the rest 3s. 
The mwximal product is 2. 

*If k 2 (mod 3), then the winning partition of k consists of one 2 and the rest 3s. 
The maximal product is 2* 3 

Proof The four general principles enunciated earlier constitute a proof First, no 
winning partition can include the integer 1. Second, no winning partition can include 
an integer expressible in the form a + b where a > 2 and b > 2, because replacing 
a + b by a and b in the partition produces a larger associated product, since 
a + b < a *b: 

ab-b= (a- 1)b? (a- 1) 2=a+ (a-2) >a 

Third, replacing 4 by two 2s in any partition leaves the associated product unchanged. 
Fourhi, 2 <32 

The second problem There are at least two reasons why it is difficult to be content 
with Theorem 1 as the endpoint of this journey of exploration. First, the three-case 
nature of its conclusion is aesthetically somewhat unsatisfying. Second, upon re-ex- 
amination, the restrictions in the original problem, that the number k and all of the 
summand/factors be positive integers, begin to appear almost "arbitrary and capri- 
cious." Would it not be more natural to relax those conditions and allow any positive 
real numbers? 

DEFINITION 2. Given a positive real number k. A real-partition of k is a collection 
of (not necessarily distinct) positive real numbers {xl, x2,. .., x,} such that El xi = k. 
A real-partition {xl, x2,. .., x,} is called a winning real-partition of k if 
H' 1 xi 2 rl='1 y, for any other real-partition {Y1, Y2, Ym} of k. 

The second problem, then, is simply this: 

Problem 2. Given a positive real number k, find a winning real-partition of k. 

Our strategy will be to look at all of the 2-number real-partitions of k and find the 
one with maximal product (the "winner" in the 2-number category), then find the 
winner in the 3-number category, then the winner in the 4-number category, etc. 
Finally we will look for the winner among winners. Lemma 1 describes the category 
winners. 

LEMMA 1. Given a positive real number k and a (fixed) positive integer n. Among 
all of the real-partitions of k that consist of n numbers, the winning real-partition (the 
one that yields naximal product) consists of n copies of k/n. 

Proof. The result follows from two facts. The first is that the (continuous) real-val- 
ued product function p defined on the (compact) set 

D = ((Xl,X2- ,X)| E xi=k, xi>0foralli} 

by p(xI, x2,..., x) = Il 1 xi attains a maximum at some point of D. The second is 
that if xi # xj for some i and j, then (xI, X2, xi, . ..., x,) does not 
maximize p: in view of the arithmetic/geometric mean inequality, replacing both xi 
and xj by their average produces an n-tuple that yields a greater value for p. 
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Example. According to Lemma 1, these are the winners in the 2-, 3-, 4-, and 
5-number categories for k = 10: 

{ 10/2, 10/2}, { 10/3,10/3, 10/3}, { 10/4,10/4,10/4, 10/4}, 
{ 10/5, 10/5,10/5,10/5, 10/5} 

The associated products are 

(10/2)2 = 25, (10/3)3 = 37.037, (10/4)4 = 39.0625, (10/5)5 = 32 

It appears that the winner among winners is {10/4,10/4,10/4,10/4}. 
What we need to do now is determine, for arbitrary k, which value of n yields the 

winner among the category winners 

{k/1) {k/2, k/2) { k/3, k/3, k/3) ... {k/n, k/n,..., k/n) ... 
We begin by compiling a partial table, Table 1, of values of k and approximate values 
of the products (k/n)Y associated with the first few category winners for k. For each 
k the largest product among winning products is circled. Patterns in the table suggest 
two key facts, which we formalize as Lemma 2 and Lemma 3. 

TABLE 1 

k (k/l)1 (k/2)2 (k/3)3 (k/4)4 

1 D .25 .037 .003 ... 

2 1 .296 .0625 

3 ? 2.25 1 .316... 

22/l =4 2.37 1 

5 5 4.63 2.44 

6 6 8 5.06 

33/2 2= 6.75 6.75 E 3 8.10 .. . 

7 7 12.25 9.37... 

8 8 16 Q 16 

9 9 20.25 25.62... 

44/33 = 9.4T1 9.481 22.47... ( 6 

10 10 25 37.03... 

LEMMA 2. The sequence 2 2/11, 33/2 2,44/33,55/44,... is strictly increasing and 
has no upper bound. 
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Proof. The sequence is unbounded because nn/(n - I)n I = [n/(n - 1) 1n, 
which is greater than n. It is strictly increasing because the function of a real variable, 
f(x) = xX/(x - 1)X-1, has positive derivative for x > 1. 

Lemma 3 generalizes the observation that if, for example, k is between 33/2 2 and 
44/33, then the winning product for k is found in column 3 of Table 1. 

LEMMA 3. For k 2 4, if n is the positive integer such that 

nn/(n - 1)1l" < k < (n + 1) n+1 /nn (1) 

then 

(k11)1 < (k/2)2 < (k/3)3 < < [ k/(n - 1)]n-1 (k/n) n (2) 
and 

(k/n)'1> [k/(n + 1)]"1] > [k/(n + 2) n+2>... (3) 

Furthermore, 

(k/n)" = [k/(n-1)] n-1 if and only if nn/(n - 1)-' = k. 

Proof. First note that, by Lemma 2, there is a unique positive integer n such that 
(1) holds. To establish (2), begin with 

nn/(n n-1)"n < k (4) 
from (1) and apply Lemma 2 to deduce that (i + 1)'+ /i' < k for all i = 1, 2,. . ., n - 2. 
Replacing k by k'+1/k' in this inequality yields (k/i)' <[k/(i + i)1'+ for all 
i=1,2,...,n-2;thatis 

(k/i)' < (k/2)2 < (k/3)3 < ... < [k/(n - 1)]n- 

which is nearly (2). To establish the final inequality in (2), replace k by. k n /k 
in (4). 

To establish (3), begin with the inequality k < (n + 1)n+l /n' from (1) and apply 
Lemma 2 to deduce that k < (i + 1)i+I/ii for all i = n, n + 1, n + 2,.... Replacing k 
by k'+ 1 /ki in this inequality yields [ k/(i + 1)]i+ 1 < (k/i)i for all i = n, n +1,..., 
that is 

(k/n)1} > [k/(n + 1)] n+1 > [k/(n + 2)] +2 >.. 

which is exactly (3). The "Furthermore" statement in Lemma 3 is a trivial exercise in 
algebra. 

We now have only to summarize our work in a theorem that provides a complete 
answer to the second problem. 

THEOREM 2. Every positive real number k has a winning real-partition consisting of 
n copies of k/n where n is the least positive integer for which 

(n + I) 

The associated maximal product is (k/n)n. If k > n"/(n - 1)n-1, then this winning 
real-partition is unique. If k = nn/(n - 1)n-1, then there is a second winning 
real-partition: (n - 1) copies of k/(n - 1). 
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Example. Find the winning real-partition for k = 50. According to Theorem 2, we 
need to find the least positive integer n such that 

50 < (n + 1) +'/n"l (5) 
and then the winning real-partition will consist of n copies of 50/n. Solving (5) looks 
like it will require a guess-and-check process, but if we analyze the expression in n a 
bit, we can make a good first guess. Notice that 

(n + 1)'+'/n"' = [(n + 1)/n] "(n + 1) = [1 + l/n] (n + 1) 
and recall that [1 + (1/n)]n approaches e as n gets large. Thus inequality (5) is 
roughly equivalent to 50 < e(n + 1), so a reasonable first guess is n z 50/e z 18. 
Checking, we find that 1919/1818 = 50.28 and 1818/1717 47.56. Thus n = 18 is the 
least positive integer solution to (5). The winning real-partition consists of 18 copies of 
50/18, and the associated maximal product is (50/18)18 96,951,601. Compare this 
with the winning integer partition of 50, sixteen 3s and one 2, and its associated 
maximal product, 316 21 = 86,093,442. 

The third problem The example just completed provides a fascinating clue that we 
are getting close to something fundamental. The ubiquitous number e seems to play a 
key role. For the optimal real-partition of k, {k/n, k/n,..., k/n}, the value of n is 
approximately k/e, and thus the repeated summand, k/n, is approximately e. 

To decide how to formulate a third problem that will reveal the role of e, we look 
back at what we were doing in the final stages of solving Problem 2, but now we write 
repeated addition as multiplication and repeated multiplication as exponentiation. 

We were looking for a positive integer n and a positive real number r 
such that r n = k and r" is maximized. 

The only restriction left to loosen is the restriction that n be an integer. That is, we 
are about to allow ourselves to think, for example, of 10 as "the sum of three-and- 
one-half 26s," and to evaluate "the product of three-and-one-half 27S." 

DEFINITION 3. Given a positive real number k. A pseudo-partition of k is an 
ordered pair of positive real numbers (x, y) such that x y = k. A pseudo-partition 
(x, y) of k is a winning pseudo-partition of k if x Y 2 u" for any other pseudo-parti- 
tion (u, v) of k. 

For example, (50/18,18) is a pseudo-partition of 50, but it is not a winning 
pseudo-partition because the pseudo-partition (e, 50/e) has a greater associated 
power, e50/ e= 97,364,484. 

Problem 3. Given a positive real number k, find a winning pseudo-partition of k. 
THEOREM 3. Every positive real number k has a unique winning pseudo-partition, 

namely (e, k/e). The associated maximal power is ek/e. 

Proof The task is to maximize the function f(x, y)= x Y subject to the constraints 
x * y = k, x > 0, y > 0. Substituting k/x for y into the formula for f yields a function 
of one variable, g(x) = x k / X. The function g is maximized where its (easily calcu- 
lated) derivative is zero, namely at x = e. Thus x = e and y = k/e maximize f. 

Intermission When we compare Theorem 3 to Theorem 2 and Theorem 1 it 
appears that we have reached a satisfactory stopping point. The statement of Theorem 
3 is a model of simplicity. There are no special cases, no technical inequalities, no 
exceptions to uniqueness. The proof of Theorem 3 is short and direct. And Theorem 
3, while including neither Theorem 2 nor Theorem 1 as a special case, certainly 
illuminates them both. To anthropomorphize: The numbers in the winning integer 
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partition of 50 were all trying to be e, but were prevented by the two restrictions that 
(1) they had to be integers, and (2) they had to be integral in number. So most settled 
for 3 and some for 2. The numbers in the winning real-partition of 50 were all trying 
to be e, but were prevented by the single restriction that they had to be integral in 
number. So they all settled for 2.7. Once we allowed a "real number of real 
summands," all those "summands" could become e and the "associated product," now 
a power with real exponent, could achieve its highest value. 

With a result as conclusive as Theorem 3 in hand, it is tempting to consider the 
project finished. But a glance back at the sum-product questions that we have 
answered immediately suggests a related set of "dual" questions in which the roles of 
sum and product are interchanged and the goal is to minimize rather than maximize. 
Our hope is that the new theorems answering these new questions will closely 
resemble old Theorems 1, 2, and 3. 

The new first problem The dual of the original problem for 12-year olds is this: 
Given a positive integer k, find positive integers whose product is k and whose sum is 
minimal. To solve this problem we should follow a path parallel to the one that we 
traveled before. We begin with a definition of the multiplicative analog of (integer) 
partition. 

DEFINITION 1'. Given a positive integer k. An integerfactor set of k is a collection 
of (not necessarily distinct) positive integers {xi, x2, X1 such that H1I xi = k. An 
integer factor set {xl, x2. . . X1} of k is called a winning integer factor set of k if 
E'=1 xi < EmL1 yi for any other integer factor set {y1, Y2, ..y Ym)} of k. 

Examnple. {2,2,2,3, 3} is a winning integer factor set of 72; {3,4, 6} is not. 
Problem 1'. Given a positive integer k, find a winning integer factor set of k. 
THEOREM 1'. Every positive integer k > 1 has a winning integer factor set. If we 

agree to replace any 4 by two 2s, then each k has a unique winning integerfactor set, 
namnely the set of all prime factors (with repetitions) of k. 

Proof. Three readily proved observations constitute a proof. First, no winning 
integer factor set can include the integer 1. Second, no winning integer factor set can 
include a composite number a *b where a > 2 and b > 2. (Use the same argument as 
in the proof of Theorem 1.) Third, replacing 4 by two 2s in any integer factor set 
leaves the associated sum unchanged. 

Notice that this new Theorem 1' is nothing at all like old Theorem 1. Our hoped 
for duality has not yet materialized. 

The new second problem Just as we did before, we now remove the restriction 
that the numbers in a factor set be integers. 

DEFINITION 2'. Given a positive real number k. A realfactor set of k is a collection 
of (not necessarily distinct) positive real numbers {xl, x2..X} such that HI-1 xi = k. 
A real factor set {x1, x2, X} of k is called a winning real factor set of k if 
E'1 xi < Em1 yi for any other real factor set {Y1, Y2, Ym}Ofk 

Problem 2'. Given a positive real number k, find a winning real factor set of k. 
As before, our strategy is to first determine the winner among all 2-number real 

factor sets, the winner among all 3-number real factor sets, the winner among all 
4-number real factor sets, and so forth. Then we go on to find the winner among 
winners. As before, a simple lemma gives us the winners in each weight class. 

LEMMA 1'. Given a positive real number k and a (fixed) positive integer n. Among 
all of the realfactor sets of k that consist of n numbers, the winning realfactor set (the 
one that yields the minimal sum) consists of n copies of k 1/ 1 
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Proof. The lemma follows from two facts. The first is that no real factor set that 
contains two (or more) distinct numbers can have minimal sum. Again this is an 
immediate consequence of the inequality between geometric and arithmetic means. 
The second fact is that the continuous function s(x1, x2,..., xn) = En xi does attain 
a minimum at some point of the set 

D=((xlX2,x * ) Jfix = k, all Xi > 0 

To prove this second fact requires some care, since the set D is not bounded. We 
omit the rather technical argument to save space. 

Example. The winning real factor sets in the first four weight classes for k = 10 are 
these: 

{ 10) with associated sum 10 
(101/2, 101/2) with associated sum 2 101/2 6.32 

{ i0"/3, 101/3, 101/3) with associated sum 3 101/3z 6.46 
{101/4, 101/4,101/4,101/4) with associated sum 4.101/4 7.11 

It appears that the winner among winners is {101/2, 101/2}. 
To seek out a pattern in the winning real factor sets for various values of k we 

proceed, as before, to compile a table (Table 2) of the sums associated with the 
different weight classes for small integral values of k. Winning sums are circled. It 
appears from the table that the winning real factor sets jump to the right as k 
increases. Of particular interest are the values of k at which these jumps (ties for 
winner) occur. The first is at k = 4. The second is at the value of k where 
2k1/2 = 3k1/3, that is, at k = (3/2)3-2 - 11.39. The third is where 3k'/3 = 4k1/4, that 
is, at k = (4/3)4 3z 31.57. Extending this pattern suggests strongly a theorem that 
solves Problem 2'. 

TABLE 2 

k lkl/l 2k 1/2 3k 1/3 4k 1/4 

2 ( 2.83 3.78 4.76 

3 ? 3.46 4.33 5.26 

4 4.76 5.66 

5 5 5.13 5.98 

6 6 < 5.45 6.26 

10 10 < 6.46 7.11 

11 11 6.67 7.28 

12 12 6.93 C 7.44 
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THEOREM 2'. Every positive real number k has a winning real factor set consisting 
of n copies of kV/ri where n is the least positive integerfor which 

{n + i \(n+0)71 
k< - 

The associated minimal sum is nk'In. If k > (n/(n - 1))n(- '), then this winning real 
factor set is unique. If k (n/(n - -1), then there is a second winning real 
factor set: n - 1 copies of k 1'/(t - 1) . 

The proof Theorem 2' depends on two lemmas, Lemmas 2' and 3' below, that are 
analogous in statement to Lemmas 2 and 3. As was the case with Lemma 1', the 
proofs of Lemmas 2' and 3' are trickier than were the proofs of Lemmas 2 and 3, and 
again, for reasons of space, we omit them. 

LEMMA 2'. The sequence (2/1)2 1, (3/2)3 2, (4/3)43, ... is strictly increasing and 
has no upper bound. 

LEMMA 3'. For k > 4, if n is the positive integer such that 

(n/(n - ))"(n-l ?k < ((n + 1)/n)(n+')n 
then 

k > 2k1/2 > 3k'1/3> > (n - 1)k1(1-1) 2 nkl/n 
and 

nkl/" < (n + 1)kl/(n+') < (n + 2)k1/(n+2) < ... 

Furthermore 

nk /1 = (n - 1)k"(n-') k f and only if (n n(n 1) = k. 

As we did with Theorem 2, we now apply Theorem 2' to the case of a large k, say 
k = 1000. Only a few guesses are needed to find the least integer n for which 
1000 < ((n + 1)/n)("+')n, namely n = 7. Thus, by Theorem 2', the winning real 
factor set consists of 7 copies of 1000'1/7 and the associated sum is 7 X 10001/7 z 7 X 
2.68270 z 18.77887. We notice two things about this example. First, the sum associ- 
ated with the winning real factor set is less than the sum, 21, associated with the 
winning integer factor set, {2, 2, 2, 5, 5, 51, as it must be since every integer factor set is 
also a real factor set. Second, the repeating number, 10001/7, in the winning real 
factor set is very close to e. 

The New Third Problem Guided by our approach to the old third problem, we 
reconsider the fact that the winning real factor set for k consists of n copies of k1/ n 

and we ask what the situation would be if we relaxed the condition that n be a 
counting number. (In the definition below, y assumes the role of n.) 

DEFINITION 3'. Given a positive real number k. A pseudo factor set of k is an 
ordered pair of positive real numbers (x, y) such that xY = k. A pseudo factor set 
(x, y) of k is a winning pseudo factor set of k if xy < uv for any other pseudo factor 
set (u, v) of k. 

Example. (100'1/7, 7) is a pseudo factor set of 1000, but it is not a winning pseudo 
factor set because the pseudo factor set (e, ln 1000) has a smaller associated "sum," 
18.77723 (approximately). 

Problem 3'. Given a positive real number k, find a winning pseudo factor set of k. 
THEOREM 3'. Every positive real number k has a unique winning pseudofactor set, 

namely (e, ln k). The associated minimal sum is e ln k. 
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Proof. The task is to minimize the function f(x, y) = xy subject to the constraints, 
xY=k, x>O, y>O. Solving the constraint equation xY=k for y yields y= 
In k/In x. Substituting that value for y into the formula for f yields a function of one 
variable, g(x) = x In k/In x. The function g is minimized where its (easily calculated) 
derivative is zero, namely at x = e. Thus f is minimized when x = e and y = In k. 

Conclusion In the first half of this paper we began with a problem intended for 
children, generalized it twice, and solved all three problems. In the second half we 
formulated three dual problems and, paralleling our strategies from the first half, 
solved the three new problems. For the first problems in the two families, the 
"integer-integer" problems, the results were a bit disappointing: (new) Theorem 1' 
bore little resemblance to (old) Theorem 1. For the second problems, the "real- 
integer" problems, (new) Theorem 2' paralleled (old) Theorem 2 closely. Some of the 
details of proof, however, were different and more difficult. For the third problems, 
the "real-real" problems, (new) Theorem 3' and (old) Theorem 3 turned out to be 
almost identical, and even their proofs were "dual." 

Proof Without Words: 
The Difference-Product Identities 

y 

(cos a,sin a) 

2sin 2 

cos (c-cos a = 2sin 2os ,sin (3) 

a 

-1 0~~~~~~~ 

sin a- sin,8=v = 2sin Cosa 8 
2 2 

cos8- cos a=u =2sin sina 8 
2 2 

-SIDNEY H. KUNG 
JACKSONVILLE UNIVERSITY 
JACKSONVILLE, FL 32211 
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A Markov Chain Analysis 
of the Game of Jai Alai 

PHILIP J. BYRNE 
College of St. Benedict 
St. Joseph, MN 56374 

ROBERT HESSE 
University of Minnesota 
Minneapolis, MN 55455 

Introduction Jai Alai, a game resembling racquetball, evolved in Spain during the 
seventeenth century. In twentieth-century America, Connecticut, Florida, and Rhode 
Island operate Jai Alai frontons, where fans can watch the action and bet on the 
outcomes of games. While most fans find the play itself exciting, the real mathematical 
interest is the manner in which a winner is determined. 

Before play begins, the eight players (or two-player teams) are placed in a queue 
with assigned post positions 1 to 8. A game consists of a sequence of short matches 
between two players; the first match pits player 1 against player 2. The winner of a 
match faces the next player in the queue, while the loser of a match returns to the 
back of the queue. The first seven matches are worth one point each; succeeding 
matches are worth two points. The winner is the first player to reach or exceed seven 
points. 

Experienced Jai Alai bettors realize, intuitively, that players in low-numbered post 
positions have an advantage over players near the back of the queue. Informal analysis 
supports this point: for example, player 1 could win the game by winning the first 
seven matches, for one point each. Even if he loses an early match, player 1 will likely 
have a second opportunity to play. Player 6, on the other hand, could win by surviving 
his first five matches (the last three are worth two points each). But if player 6 loses 
any of these matches, another player may well reach seven points before player 6 
returns to the front of the queue. 

We will show how a Jai Alai game can be modelled as a Markov chain, and thus 
show how each player's winning depends on his post position. We will assume for 
convenience that all eight players have equal skill, but other assumptions about 
relative skills can be readily incorporated into the Markov chain analysis. The same 
approach can also be applied to other kinds of bets, such as trifectas and quinielas. 

The model To model Jai Alai using Markov chains, we must first define an 
appropriate notion of a state. To describe the game at any time requires two data for 
each player: (1) his current position in the queue; and (2) his current score. Thus we 
assign to the ith position in the queue an ordered pair (ai, bi), with ai the number of 
the player in position i, and bi this player's current score. In particular, al and a2 are 
the players who will meet in the next match. We now define a state to be an ordered 
set {(a,, bl), (a2, b2), (a3, b3), (a4, b4), (a5, b5), (a6, b6), (a7, b7), (a8, b8)). The initial 
state, for instance, is always ((1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0)). The 
second state must then be either {(1, 1), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (2, 0)) 
or {(2, 1), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (1, 0)). 
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We now assume that the outcomes of different matches are probabilistically 
independent of one another, and that the probability of player m winning a match 
against player n remains constant throughout the game. Then the probability of the 
game moving from one state to another depends only on the states, not on the 
previous history of the game. With these assumptions, a Jai Alai game becomes a 
Markov chain. 

We'll need some basic notation and terminology and a fundamental result. First we 
order the states in some convenient manner, and assign them labels 1, 2, 3, ..I. If the 
game is in state i after r matches, the transition probability of moving to state j on 
the next match is denoted by Pij For most states in our Jai Alai game there are only 
two other states to which they can move. For every state i of this type, Pij = 0 for all 
but two j's, so the ith row of the transition matrix P = (pij) has only two nonzero 
entries. The only other possible states are those in which some player has amassed 
seven or more points, winning the game. For all such states i we will take pii = 1 and 
pij = O if i ?j. These states are called absorbing. 

For any Markov chain with a finite number of states, we can label the absorb- 
ing states with integers 1, 2,.. . . s, and the nonabsorbing with integers s + 1, 
s + 2,. . ., s + t. Then the transition matrix P has the form 

/1s 0 

tR 
where IS is the s X s identity matrix, 0 is an s X t matrix of zeros, and R and Q are 
t X s and t x t matrices, respectively. In particular, R gives transition probabilities 
from nonabsorbing to absorbing states, and Q gives transition probabilities from 
nonabsorbing to nonabsorbing states. It's a general fact that the (i,j)-entry of the 
t Xs matrix (It - Q)- 1R gives the probability that the Markov chain ends up in 
absorbing state j given that the initial state was s + i (see the Appendix for the sketch 
of a proof). For our Jai Alai application, the initial state is always that in which the 
queue has the players in numerical order, and each player has zero points. 

A three-player example To illustrate these ideas, consider first a simplified Jai Alai 
game, with only three players and two points needed for a win. The first two matches 
are worth one point each; a third match, if needed, is worth two points. By analogy 
with the eight-player game, a state is an ordered set of three ordered pairs {(al, bl), 
(a2, b2), (a3, b3)}, where ai and bi denote the player number and current score for 
the player in the ith position in the queue. There are, in all, eleven possible states, 
which we label as follows: 

Label State 

7 {(1, 0), (2, O), (3, 0)) 
8 {(1, 1), (3,O), (2,0)) 
1 {(1, 2), (2, O), (3, 0)) 
9 {(3, 1), (2, O), (1, 1)) 
2 {(3, 3), (1, 1), (2, 0)) 
3 {(2, 2), (1, 1), (3, 1)) 

10 {(2, 1), (3, O), (1, 0)) 
4 {(2, 2), (1,O), (3,0)) 

11 {(3, 1), (1,O), (2, 1)) 
5 {(3, 3), (2, 1), (1,0)) 
6 {(1, 2), (2, 1), (3, 1)) 
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If the three players have equal ability, then the associated transition matrix for this 
three-player game is 

state 
state 1 2 3 4 5 6 7 8 9 10 11 

I 
1 1 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 
4 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 0 

_ __ __ __ __ __ _- -- -- -- -- - - -- t- -- -- -- -- -- -- -- -- -- -- --- 
7 0 0 0 0 0 0 0 .5 0 .5 0 
8 .5 0 0 0 0 0 0 0 .5 0 0 
9 0 .5 .5 0 0 0 10 0 0 0 0 

10 0 0 0 .5 0 0 '0 0 0 0 .5 
11 0 0 0 0 .5 .5 0 0 0 0 0 

From this we can compute directly the 5 X 6 matrix (15 - QYR. Its first row, 
(.25, .125, .125, .25, .125, .125), displays the probabilities of the Jai Alai game ending in 
the absorbing states 1, 2, 3, 4, 5, and 6, respectively, given the initial state 7. Since 
player 1 is the winner in absorbing states 1 and 6, player 2 in states 3 and 4, and 
player 3 in states 2 and 5, their respective probabilities of winning are .375, .375, 
and .25. 

The eight-player game Analyzing the eight-player game is similar, but the transi- 
tion matrix P is much larger. To find the number of states, we wrote two computer 
programs to count all the vertices in an appropriate tree diagram. The root vertex of 
this tree corresponds to the initial state of the game; two branches connect the root 
with two vertices representing the two states that can occur next. Since each match in 
a Jai Alai game has two possible outcomes, most vertices have two branches emanating 
from them. Any vertex corresponding to a winning state has no outgoing branches. 
Our first program counted 844,767 vertices in this tree diagram. In the eight-player 
game (unlike the three-player game) some states can be reached by more than one 
sequence of match outcomes. Our second program eliminated these duplications. We 
found, in the end, a total of 134,215 distinct states in the eight-player game. 

Since we wish to compute (It - Q)-'R, the size of the transition matrix P might 
seem to create computational problems. However, two useful observations come to 
our rescue. First, the matrix P is sparse: no row contains more than two nonzero 
entries. Sparse matrices often admit special, efficient algorithms for such operations as 
multiplication and inversion (see, e.g., [1]). Second, since the Jai Alai game has only 
one possible initial state, which we number s + 1, we need only compute the first row 
of (It - Q)- 'R to determine the players' winning probabilities. 

This can be done by finding the first row of (1, - Q)-1, which we denote by 
(xl, x2, .. ., x), and then multiplying by the matrix R. We can find (xl, x2, ..,x-) by 
comparing the first rows on both sides of the equation (I - Q)-'(It - Q) = It, which 
gives us ( x1, x2, x . , X)( It - Q) = (1, 0, 0, . . ., 0). Taking transposes yields the linear 
system Ax = b, where A = (It -Q)t, x = (xl, x2, . x . , Xt)t, and b = (1, 0, 0. , o)t 
The nonabsorbing states can be labelled in such a way that It - Q is nearly upper 
triangular (in the three player game, 15 - Q was upper triangular). In this case, A is 
nearly lower triangular. Thus, after relatively few row operations, back-substitution 
can be performed, starting with xl, to successively find values for X1, x2, x3., xt. 
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The winning probabilities given below, which assume the players to be of equal 
ability, agree with those found by Moser [3] in her computer search through all 
possible games. 

Probability 
Player of Winning 

1 .1631 
2 .1631 
3 .1386 
4 .1240 
5 .1020 
6 .1026 
7 .0888 
8 .1177 

The table has several interesting features. First, since players 1 and 2 begin the game 
at the front of the queue and play each other in the first match, symmetry of their 
situations naturally results in equal probabilities of winning. Note also that player 8 
has a higher winning probability than players 5, 6, and 7. This reflects the fact that 
only player 8 can win the game by winning as few as four matches on his first turn to 
play. This more than compensates for player 8's smaller probability of getting a second 
chance to play after a loss. The table also supports the general intuition of Jai Alai 
bettors that players in low-numbered post positions have an advantage. Note, how- 
ever, the small advantage of player 6 over player 5. A possible explanation is that 
player 5 needs a string of six wins, while player 6 would need to win only five matches. 

Many related problems could be studied with the approach presented here. For 
example, Moser [3] used her computer search through the Jai Alai game tree to 
determine the probabilities for place, show, and exacta bets when all players have 
equal abilities, and also the probabilities of each player winning under certain 
combinations of unequally-skilled players. All of these situations could be handled 
using Markov chains. For place, show, and exacta bets, we would need to expand the 
number of possible states to account for the way ties are broken for place and show in 
Jai Alai. If the players have unequal skill, then for each ordered pair of players, (m, n), 
we would assign a probability, Om.l, of player m winning a match against player n. The 
implication for the transition matrix P is straightforward. If the transition from state i 
to state j involves player m winning a match against player n, then Pij = Omn. This 
change from the earlier case affects only the nonzero entries of P, so P will again be 
a sparse matrix and the Markov chain analysis will remain computationally feasible. 

Appendix To find the probability that a Markov chain ends up in a certain 
absorbing state given that it started in a particular nonabsorbing state, we note first 
that the (i, j) entry of the matrix R gives the probability of moving from nonabsorbing 
state s + i to absorbing state j in one step. The (i, j) entry of the matrix QR gives the 
probability of moving from nonabsorbing state s + i to some other nonabsorbing state 
in one step, and then to absorbing state j on the next step. That is, the entries of QR 
are the probabilities of moving from nonabsorbing states to absorbing states in two 
steps. Similarly, the entries of Q2R give the probabilities of moving from nonabsorb- 
ing states to absorbing states in three steps, and so on. Therefore, the probability that 
the Markov chain eventually ends up in absorbing state j given that the initial state 
was s + i is determined by the (i, j) entry of the matrix 
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R+QR+Q2R+Q3R+... =( I+Q+Q2+Q3+ ...)R. 

It can be shown that all the entries of Q" approach zero as n tends to infinity (see 
[2, pp. 43-45]). This condition yields the following matrix generalization of the 
familiar formula for the sum of a geometric series: 

(It -Q)- = I + Q + Q2 + Q3 + 

(see [2, p. 22]). Thus we see that the (i, j)-entry of the t x s matrix (I - Q)- 'R gives 
the probability that the Markov chain ends up in absorbing state j given that the initial 
state was s + i. 
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Poker With Wild Cards-A Paradox? 

STEVE GADBOIS 
Rhodes College 

Memphis, TN 38112 

I participate in a sporadic poker game whose organizer detests any use of wild cards. 
(A wild card can be called anything its holder wishes.) I'd always attributed this 
aversion to some personality quirk. Then I discovered a reason to share his concern. 

After a recent class in which I tossed out an unsubstantiated claim about wild cards 
sometimes altering the accepted hierarchy of poker hands, I decided I'd better 
actually do the calculations before my students did. I wasn't surprised to substantiate 
my claim, but I was surprised to discover that unresolvable inconsistencies can arise 
when wild cards are used. This note shows how, in one common situation, no matter 
what hierarchy is established, the resulting probabilities are incompatible with it. So 
perhaps my friend (who happens to be a political scientist, as well as the frequent 
victor in our always-friendly games) has more innate mathematical talent than either 
of us realized. 

The usual hierarchy of poker hands (when played without wild cards) is, from best 
to worst, royal flush, straight flush, four-of-a-kind, full house, flush, straight, three-of- 
a-kind, two pair, one pair, and junk.' Without wild cards, this hierarchy is consistent 

'Some of these terms may not be self-explanatory. A royal flush consists of an ace, kdng, queen, jack, 
and ten, all in one suit. A straight flush comprises five in a row, all in one suit (but not a royal flush). A full 
house includes three-of-a-kind and one pair. A flush consists of five cards in one suit (but not a royal flush 
or a straight flush). A straight has five in a row (but not a royal flush or a straight flush). Any other hand is 
junk. 
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R+QR+Q2R+Q3R+... =( I+Q+Q2+Q3+ ...)R. 

It can be shown that all the entries of Q" approach zero as n tends to infinity (see 
[2, pp. 43-45]). This condition yields the following matrix generalization of the 
familiar formula for the sum of a geometric series: 

(It -Q)- = I + Q + Q2 + Q3 + 

(see [2, p. 22]). Thus we see that the (i, j)-entry of the t x s matrix (I - Q)- 'R gives 
the probability that the Markov chain ends up in absorbing state j given that the initial 
state was s + i. 
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292-300. 

Poker With Wild Cards-A Paradox? 

STEVE GADBOIS 
Rhodes College 

Memphis, TN 38112 

I participate in a sporadic poker game whose organizer detests any use of wild cards. 
(A wild card can be called anything its holder wishes.) I'd always attributed this 
aversion to some personality quirk. Then I discovered a reason to share his concern. 

After a recent class in which I tossed out an unsubstantiated claim about wild cards 
sometimes altering the accepted hierarchy of poker hands, I decided I'd better 
actually do the calculations before my students did. I wasn't surprised to substantiate 
my claim, but I was surprised to discover that unresolvable inconsistencies can arise 
when wild cards are used. This note shows how, in one common situation, no matter 
what hierarchy is established, the resulting probabilities are incompatible with it. So 
perhaps my friend (who happens to be a political scientist, as well as the frequent 
victor in our always-friendly games) has more innate mathematical talent than either 
of us realized. 

The usual hierarchy of poker hands (when played without wild cards) is, from best 
to worst, royal flush, straight flush, four-of-a-kind, full house, flush, straight, three-of- 
a-kind, two pair, one pair, and junk.' Without wild cards, this hierarchy is consistent 

'Some of these terms may not be self-explanatory. A royal flush consists of an ace, kdng, queen, jack, 
and ten, all in one suit. A straight flush comprises five in a row, all in one suit (but not a royal flush). A full 
house includes three-of-a-kind and one pair. A flush consists of five cards in one suit (but not a royal flush 
or a straight flush). A straight has five in a row (but not a royal flush or a straight flush). Any other hand is 
junk. 
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with the relative frequency of the hands. (For the calculations for 5 card poker 
without wild cards, see [2]. Packel allows an ace to be either high or low in a straight 
(instead of just high). This does not affect the hierarchy itself.) 

If the two jokers are added as wild cards, one more hand is possible: five-of-a-kind. 
The first table gives frequencies and probabilities for all possible hands. The verifica- 
tions of these frequencies are nice exercises in combinatorics. Here's one sample of 
the systematic (if somewhat pedantic) reasoning involved. For four-of-a-kind, there 
are three distinct ways to specify the hand without redundancy. 

(a) Select no joker of the two; select one denomination from the thirteen; select all 
four of that denomination; select one denomination from the remaining twelve; 
and select one of the four of that denomination. 

(b) Select one joker of the two; select one denomination from the thirteen; select 
three of the four of that denomination; select one denomination from the 
remaining twelve; and select one of the four of that denomination. 

(c) Select two jokers of the two; select one denomination from the thirteen; select two 
of the four of that denomination; select one denomination from the remaining 
twelve; and select one of the four of that denomination. 

Thus the number of ways to get four-of-a-kind is 

21 )( 13) 4 )(12 4 + 2 1 )(3) (41 ( 12 4 + ( 21)( 13 )(42( 12 4 

= 624 + 4992 + 3744 = 9360. 

TABLE 1 Wild card poker frequencies and probabilities, based on the usual hierarchy 

Rank Type Frequency Probability 

1 FIVE-OF-A-KIND 78 0.000025 
2 ROYAL FLUSH 84 0.000027 
3 STRAIGHT FLUSH 480 0.000152 
4 FOUR-OF-A-KIND 9360 0.002960 
5 FULL HOUSE 9360 0.002960 
6 FLUSH 11448 0.003620 
7 STRAIGHT 30540 0.009657 
8 THREE-OF-A-KIND 233584 0.073860 
9 TWO PAIR 123552 0.039068 

10 ONE PAIR 1440464 0.455481 
11 JUNK 1303560 0.412192 

(TOTAL) (5) = 3162510 1 

Observe one anomaly in the first table: Three-of-a-kind and two pair are in the 
wrong order. But if their positions are reversed, many hands that would have been 
three-of-a-kind are now best called two pair. For example, {A4, 8Y, 44, JOKER, 
JOKER) can be called "three aces" (if three-of-a-kind beats two pair) or two aces and 
two eights (if two pair beats three-of-a-kind). So the numbers of these two types of 
hands change, as shown in the second table: Two pair and three-of-a-kind are in the 
wrong order again! (In fact, the situation is relatively worse than before the reversal.) 

A look at the first table reveals that the same phenomenon occurs with one pair and 
junk. For example, {A4, 8V, 44, 2 *, JOKER) can be called "two aces" (if one pair 
beats junk) or "junk" (if junk beats one pair, calling the JOKER a king, say). (For 
other situations in which junk beats one pair or even two pair, see [1].) 
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TABLE 2 Wild card poker frequencies and probabilities, based on a revised hierarchy 

Rank Type Frequency Probability 

1 FIVE-OF-A-KIND 78 0.000025 
2 ROYAL FLUSH 84 0.000027 
3 STRAIGHT FLUSH 480 0.000152 
4 FOUR-OF-A-KIND 9360 0.002960 
5 FULL HOUSE 9360 0.002960 
6 FLUSH 11448 0.003620 
7 STRAIGHT 30540 0.009657 
8 TWO PAIR 302224 0.095565 
9 THREE-OF-A-KIND 54912 0.017363 

10 JUNK 1645784 0.520404 
11 ONE PAIR 1098240 0.347268 

The more one looks, the worse it gets. In the original hierarchy, there were 9360 
four-of-a-kind hands and 9360 full house hands. So one could arbitrarily decide to 
rank a full house above four-of-a-kind. But this would really be disastrous, for then 
there would turn out to be 18096 full houses and 624 four-of-a-kind! With two added 
jokers as wild cards, there is no hierarchy of hands that is consistent with the 
frequency of the hands. 

REFERENCES 

1. Y. L. Cheung, Why poker is played with five cards, The Mathematical Gazette 73 (1989), 313-315. 
2. Edward W. Packel, The Mathematics of Games and Gamnbling, Mathematical Association of America, 

1981. 

Counting Squares in Zn 

WALTER D. STANGL 
Biola University 

LaMirada, CA 90639 

An elementary number theory problem is to determine the possible forms of squares 
among the positive integers. For instance, it is easy to see that any square must be of 
the form 3k or 3k + 1. (Since every positive integer can be written as either 3q, 
3q + 1, or 3q + 2, simply square these numbers and simplify.) Restated, this assertion 
is that 0 and 1 are the squares in 3, the ring of equivalence classes of integers 
modulo 3. In general, a square has the form nk + r if, and only if, r is a square in the 
ring Z, How many squares are there in Z ? 

Fundamental notions An element a in E , is a square in Z,, if and only if x2 = a 
has a solution in EnL The units of En are the elements that are relatively prime to n. 
The units that are squares are commonly called quadratic residues (or, more 
precisely, the quadratic residues mod n in a reduced residue system) [1, p. 84]. The 
quadratic residues have been completely characterized [2, p. 2011, and the standard 
results will be utilized in what follows. 
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TABLE 2 Wild card poker frequencies and probabilities, based on a revised hierarchy 

Rank Type Frequency Probability 

1 FIVE-OF-A-KIND 78 0.000025 
2 ROYAL FLUSH 84 0.000027 
3 STRAIGHT FLUSH 480 0.000152 
4 FOUR-OF-A-KIND 9360 0.002960 
5 FULL HOUSE 9360 0.002960 
6 FLUSH 11448 0.003620 
7 STRAIGHT 30540 0.009657 
8 TWO PAIR 302224 0.095565 
9 THREE-OF-A-KIND 54912 0.017363 

10 JUNK 1645784 0.520404 
11 ONE PAIR 1098240 0.347268 

The more one looks, the worse it gets. In the original hierarchy, there were 9360 
four-of-a-kind hands and 9360 full house hands. So one could arbitrarily decide to 
rank a full house above four-of-a-kind. But this would really be disastrous, for then 
there would turn out to be 18096 full houses and 624 four-of-a-kind! With two added 
jokers as wild cards, there is no hierarchy of hands that is consistent with the 
frequency of the hands. 
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Counting Squares in Zn 
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An elementary number theory problem is to determine the possible forms of squares 
among the positive integers. For instance, it is easy to see that any square must be of 
the form 3k or 3k + 1. (Since every positive integer can be written as either 3q, 
3q + 1, or 3q + 2, simply square these numbers and simplify.) Restated, this assertion 
is that 0 and 1 are the squares in 3, the ring of equivalence classes of integers 
modulo 3. In general, a square has the form nk + r if, and only if, r is a square in the 
ring Z, How many squares are there in Z ? 

Fundamental notions An element a in E , is a square in Z,, if and only if x2 = a 
has a solution in EnL The units of En are the elements that are relatively prime to n. 
The units that are squares are commonly called quadratic residues (or, more 
precisely, the quadratic residues mod n in a reduced residue system) [1, p. 84]. The 
quadratic residues have been completely characterized [2, p. 2011, and the standard 
results will be utilized in what follows. 
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We will adopt the following notation: q(n) = the number of quadratic residues in 
zn, and s(n) = the number of squares in Zn. For example, q(8) = 1 since x2 = 1 has 
a solution in Z8 (as a matter of fact, all four units, namely 1, 3, 5, and 7, are solutions), 
and x2 = 3, x2 = 5, and x2 = 7 do not have any solutions in 8. Also, s(8) = 3 since 
x2= 0 and x2= 4 also have solutions in Z8, but x2 = 2 and x2 = 6 do not. 

A number-theoretic function f(n) is multiplicative if gcd (m, n) = 1 implies f(mn) 
=f(m) f(n). Typical number-theoretic functions that are multiplicative include the 
number of positive divisors of n and the sum of these divisors 
[1, p. 109]. A number-theoretic function that is multiplicative is completely character- 
ized by its values on powers of primes. Both q(n) and s(n) are multiplicative; we 
derive both recursive and closed-form formulas for these functions on the powers of 
primes. This will allow us to compute s(n) and q(n) for any n, based on the prime 
factorization of n. 

Suppose gcd(m, n) 1. Then Zmn is isomorphic to Zm X 7n under the ring 
isomorphism h: ;mll -*+ ZMX Zn defined by h(z) = (z mod m, z mod n) [3, p. 80]. 
Suppose a is a square in Zmn. Then there is a b in Zmn such that b2 = a. Since h is a 
function from Zm,, onto Zm X zn there exists (x, y) e ZZm X Z4, such that h(b) = 
(x, y). Then h(a) = h(b2) = [h(b)]2 = (x, y)2 = (x2, y2), so h(a) is a square in 
zm X ZW Hence s(mn) < s(m)s(n). 

On the other hand, if u in Zm and v in Zn are squares, then there exist x in Zm 
and y in 4,, such that (x2, y2) = (U, v) in Zm X Z. Thus h-'(u, v) = h-'[(x, y)2] = 

[h-'(x, y)]2F so h'-(u, v) is a square in ZZmn. Thus s(mn) 2 s(m) *s(n). 
Combining these results yields the desired equality, showing that s(n) is a multi- 

plicative function. To extend the proof to q(n) requires merely the observation that 
for any integer b, gcd(b, mn) = 1 if, and only if, gcd(b, m) = 1 and gcd(b, n) = 1. 

Recursion formula Our next goal is to prove a general recursion formula for the 
number of squares in ZZpn, where p is a prime greater than 2. Once this is achieved, 
formulas in closed form for the various components will complete our counting 
procedure. We begin with the observation that the squares in ;7pn that are not 
quadratic residues are generated by the squares in Z pn-2, i.e., b is a square in ;pn-2 if 
and only if bp2 is a square in Z n. 

First, suppose there is c in Z pn-2 such that c2 = kp"'2 + b in Z. Then C2p2 - 

kpt' + bp2. Now Cp < pt, so (cp)2 = bp2 is a square in Z pn. Conversely, suppose there 
is y in ZP'l such that y2 = mptn + Sp2 in Z. Then p2 divides y2, so p divides y. Thus 
there is c such that y = cp. Then c2 = Mp t-2 + s and s is a square in Z n-2. 

Now we wish to count all the squares in Z n. We begin by observing that the 
squares are of two types. Since q( pn) counts the squares in 7Zpn that are units, we 
must merely count the squares that are non-units, i.e., multiples of p. Suppose kp is a 
square in Z pn. Then there is a b such that b2 = cpn + kp. Then p divides b2, and 
hence b. Thus p2 divides b2, and hence kp, so p divides k. Hence the multiples of p 
that are squares are multiples of p2. But by the preceding result, the number of these 
will be given bys(p-2). 

Thus we have proven the following recursion formula. 

THEOREM. For n > 3 s(pW) = q(p ') + s(p '-2 ). 

Powers of odd primes In order to obtain explicit formulas for the functions q( pn) 
and s( p "), it is useful to deal with the case p = 2 separately. The argument for 
powers of an odd prime p depends on the existence of a primitive root for pn for 
each n. In algebraic language, this says that the units of Z7pfn form a cyclic group with 
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respect to multiplication and hence have a generator [1, p. 62]. Since this is not true 
for powers of 2 greater than or equal to 3, our approach and results will need to be 
altered for that situation. 

If p is an odd prime, the Euler phi-function yields the numbers of units of ZZpn 
namely p1 - p11-1 There is a primitive root of p". The even powers of this primitive 
root are clearly distinct quadratic residues, and the following formula is proven. 

THEOREM. If p is an odd prime, then q(p") = (p" - p"I')/2, for all n ? 1. 

In order to count all of the squares in ZPA,, it is useful to look at the first two cases 
separately. Since 0 is the only non-unit in Zp, clearly s( p) = q( p) + 1 = (p + 1)/2. 
In Zp 2, the non-units are multiples of p, and have squares equal to 0. So s(p2)= 
q(p2)+ 1=(p2-p +2)/2. 

Now suppose n 2 3 and n is even. By repeated applications of the recursion 
formula, we obtain 

itpt)= +- pn-2 _ pa-1 4 p3 2 + 2 

p 11+1 _ pal + p il_ 1-1 + pn-1_,, + p3 - p2 + 2 p + p~2_ p + 2 
2( p + 1) 

p 11+1 + p + 2 
2( p + 1) 

If n is odd, we obtain 

_p" 2,1- pn-2 -pi- p3 2 
S( pi?) = 2 + 2 2 2 + 2 

-pfl+'_p11 + pl _ pf1- _ , +p2 + 2p + 1 
2( p + 1) 

p + 2+ p + 1 
2( p + 1) 

Our results are summarized in the following theorem. 

THEOREM. Suppose p is an odd prime. Then 

s P and s( p2) = p p + 2 

If n ? 3, then 

p'+ p + 2 
2(p+l1) n even 

S( P ) p11+1 + 2p +I 
2(p+l) n odd. t 2( p + 1) 

Powers of two Now we proceed to the remaining case: powers of 2. We need a 
preliminary result before moving to our main goal. 

Suppose n 2 3, and gcd (a, 2 ") = 1. Consider the equation x2 = a in Z2. Suppose 
b is a solution. Then, clearly, - b is also a solution. Also b -b, since otherwise 
2b = 0 which implies gcd(b, 2n) 0 1 while we know gcd(b2, 2") = 1. Another pair of 
solutions is easily verified to be given by 211 + b. These values are also seen to be 
distinct by the above argument. 
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To show these four solutions are the only solutions, suppose gcd (c, 2) = 1 and c is 
a solution in addition to b. Then b2 = a = c2 in Z n implies b2 -C2 = 0 or (b - c) 
(b + c) = O in Z2,.. Since b and c are both odd, either (b - c) or (b + c) must be of 
the form 4mn + 2 = 2(2mn + 1). So the other factor is a multiple of 2n-1 or 0. Hence 
c=2`1 ?+b orc =+b. 

Thus we conclude that if X2 = a has a solution in Z2 n then the equation has exactly 
4 distinct solutions in Z2n. 

We observe that the only quadratic residue in either Z2 or Z4 is 1. It follows that 
q(2)= q(4)= 1. 

For n ? 3, there are 2111 units in Z2n, namely the odd numbers. Consider two 
units equivalent if their squares are equal. Then the units can be divided into 
equivalence classes of 4 units each; hence there will be 2 -22 1-1 = 211 -3 quadratic 
residues in Z2,. Thus for n 2 3, q(2 1) 11 

We are now ready to prove our final formulas. Here's the result. 

THEOREM. 

{ 2-1 +4 

3 n even 
s(2") = 2'n-1 +5 

Proof: The argument is by induction. Starting with n = 2, it is clear that s(22) = 2. 
Now assume that the formula holds for n < k. There are two cases. 

Case I. k + 1 is even. Then 

s(2k+) =q(2k+l) +s(2k-1) 2(k+l)-3 + 2(k31) +4 

2k-2+ 2k2 +4 4.2k-2 +4 2(k+1)-1+4 2k-2 + 3 3 3 

Case II. k + 1 is odd. Then 

2(k-1)-1 + 5 
S(2k+l) q(2k+l + s(2k-) = 2(k+1) -3 + 

2k+2 + 4.2k-2 +5 2(k+1)-1 + 5 
3 3 3 

The preceding formulas are derivable directly from the recursion formula. For 
instance, if n is odd, repeated applications yield 

s(2") =q(2n) + q(211 ) + +q(2 3) + s(2) 

21-3 +21-5 +... +1+2. 

So we need a formula for the sum of the even powers of 2. Letting xI, = 1 + 22 + 
+2211, we have 

tl (2 + (22 + + (2 2) 

2n+l (22) n 
2= 

. 
I 
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22n+2 - i 
So xn= 3 , and 

s(2n) = (n-3)/2+ 2 

2n-I - 1 21"-1 + 5 
=- 

3 
+2= 

3 

A formula for the sum of the odd powers of 2 is obtained from xn by factoring, and 
then s(2n) is easily computed. 

REFERENCES 
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Magic Squares of Squares 
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A problem in the second edition of Guy's Unsolved Problems in Number Theory [1] is 
to prove or disprove that a three-by-three magic square can be constructed from nine 
distinct integer squares (Problem D15). There are relationships between magic 
squares, arithmetic progressions, Pythagorean right triangles, congruent numbers, and 
elliptic curves. This note will follow this chain and show that the following three 
problems are equivalent to the original problem: 

P1. Prove or disprove that there are three arithmetic progressions such that each has 
three terms, each has the same difference between terms as the other two, the 
terms are all perfect squares, and the middle terms of the three arithmetic 
progressions themselves form an arithmetic progression. 

P2. Prove or disprove that there are three rational right triangles with the same area, 
such that the squares of the hypotenuses are in arithmetic progression. 

P3. Prove or disprove that there is an elliptic curve, y2=x3 - 2x, where n is a 
congruent number, with three rational points on the curve, (x1, Yi), (x2, Y2), and 
(X3, y3), such that each point is "double" another rational point on the elliptic 
curve ("double" in the sense of the group structure for points on an elliptic 
curve), and xl, x2, and X3 are in arithmetic progression. 

The original problem is due to LaBar [2]. Guy [1] notes that the problem requires 
finding x, y, and z so that the nine quantities x2, y2, z2, y2 +Z2 -X2, Z2 +X2- y2, 
x2 +y2-z2, 2X2 -y2, 2X2 - Z2, and 3X2 - y2 - Z2, are distinct perfect squares. 

Magic squares and arithmetic progressions For any three-by-three magic square 
made up of distinct positive integers, there are three positive integers a, u, and v, 
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22n+2 - i 
So xn= 3 , and 

s(2n) = (n-3)/2+ 2 

2n-I - 1 21"-1 + 5 
=- 

3 
+2= 

3 

A formula for the sum of the odd powers of 2 is obtained from xn by factoring, and 
then s(2n) is easily computed. 
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A problem in the second edition of Guy's Unsolved Problems in Number Theory [1] is 
to prove or disprove that a three-by-three magic square can be constructed from nine 
distinct integer squares (Problem D15). There are relationships between magic 
squares, arithmetic progressions, Pythagorean right triangles, congruent numbers, and 
elliptic curves. This note will follow this chain and show that the following three 
problems are equivalent to the original problem: 

P1. Prove or disprove that there are three arithmetic progressions such that each has 
three terms, each has the same difference between terms as the other two, the 
terms are all perfect squares, and the middle terms of the three arithmetic 
progressions themselves form an arithmetic progression. 

P2. Prove or disprove that there are three rational right triangles with the same area, 
such that the squares of the hypotenuses are in arithmetic progression. 

P3. Prove or disprove that there is an elliptic curve, y2=x3 - 2x, where n is a 
congruent number, with three rational points on the curve, (x1, Yi), (x2, Y2), and 
(X3, y3), such that each point is "double" another rational point on the elliptic 
curve ("double" in the sense of the group structure for points on an elliptic 
curve), and xl, x2, and X3 are in arithmetic progression. 

The original problem is due to LaBar [2]. Guy [1] notes that the problem requires 
finding x, y, and z so that the nine quantities x2, y2, z2, y2 +Z2 -X2, Z2 +X2- y2, 
x2 +y2-z2, 2X2 -y2, 2X2 - Z2, and 3X2 - y2 - Z2, are distinct perfect squares. 

Magic squares and arithmetic progressions For any three-by-three magic square 
made up of distinct positive integers, there are three positive integers a, u, and v, 
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such that the magic square can be expressed (possibly after rotation or reflection) as: 

a+u+2v a a+2u+v 

a+2u a+u+v a+2v 

a+v a+2u+2v a+u. 

(See Martin Gardner [31.) Note that any such magic square can be decomposed into 
three arithmetic progressions: 

a, a + u, a + 2u; 
a + v, a + u + v, a + 2u + v; 

a+2v,a+u +2v,a+2u+2v. 
Each of these three sequences has the same difference, u, between terms. Note also 
that corresponding terms of the three sequences are in arithmetic progression, with 
common difference v. Conversely, any set of three arithmetic progressions of length 
three with a common difference, and corresponding terms in arithmetic progression, 
can be rearranged into a three-by-three magic square. 

For example, if a = 1, u = 1, and v = 3, we get the familiar magic square: 

8 1 6 
3 5 7 
4 9 2 

The first equivalent formulation, P1, of the original problem should now be clear. 

Squares in arithmetic progression It is well known that it is possible to have 
three squares in arithmetic progression, but not four (Dickson [4, pp. 435-440]). For 
any increasing three-term arithmetic progression of pairwise relatively prime squares, 
r22, 2, t2, there are positive integers p and q such that 

r=Ip2 - 2pq - q21, 

s=p2 +q2 (*) 

t=p2 + 2pq - q2, 

p and q are relatively prime, and one of them is even (Dickson [4, pp. 437-438]). For 
example, if r = 1, s = 5, and t = 7, then p = 2 and q = 1. 

If r2, s2,t2 are in increasing arithmetic progression, but are not relatively prime, 
then there are k, p, and q, with k a positive integer, p and q as above, and 

r=klp2- 2pq -q21, 

s=k(p2 +q 2), and 

t=k(p2+2pq-q2). 

For the r2, s2, t2 just above, the difference between terms is 

s2 - r2 = t2 - s2= 4k2( p3q - pq3). 

Thus the original problem can be stated as find kl, Pi, ql, k2, P2, q2, k3> p3, and q3 
so that 

k2( pl3q1 - plq 3) = k2( p23q2 - p2qM) = k 2( p3 q3 - p3q 3) > O, 
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and 

ka( p2 + qj2)2. k2( p2 + q 2)2, and k( p22 + q ) 

are distinct and in arithmetic progression. (Note that the fact that one cannot have 
four squares in arithmetic progression makes unnecessary any further restrictions on 
the "horizontal" and "vertical" differences between terms.) 

It is easy to generate any number of three-term arithmetic progressions of squares, 
all with the same difference between terms, as we now show. Let u2, v2, and w2 be 
in arithmetic progression. Let p = v2 and q = v2 -u2. Then for the three-term 
arithmetic progression generated by p and q using (*), the difference between terms 
is 4u2v2w2(v2 - u2), which is a perfect square times v2 - u2. Multiplying each term 
of the sequence u2, v2, w2 by 4u2 v2w2 gives a sequence with the same difference as 
the sequence generated by p and q. This process of generating a new sequence from 
a previous one (including the step of multiplying all previous sequences by the 
appropriate constant so that all sequences have the same difference between terms) 
can be continued indefinitely. If the new sequence is always derived from the last 
sequence generated, then all the sequences will be different. This is not difficult to 
prove, but we do not do that here. 

As an example, start with the sequence generated from p = 5 and q = 2 using (*). 
These give the sequence 12, 292, 412, with difference of terms 840. Next let p = 292 - 

841 and q = 840 = 292 _ 12. These give the sequence 14111992,14128812,14145612, 
with difference of terms 840 X 23782. Not all sequences with difference a square 
times 840 are generated in this way. For example, the sequences generated by p = 6 
and q = 1, and by p =8 and q = 7 (and sequences generated from these two 
sequences) have differences between terms that are a square times 840, but are not 
included in the set of sequences generated from p = 5 and q = 2. 

Pythagorean triples There are simple relationships between three-term arithmetic 
progressions of squares and Pythagorean triples. The latter are related to congruent 
numbers and rational points on elliptic curves, so these relationships will be of use to 
us. 

Every three-term arithmetic progression of squares, r2, s2, t2, can be associated 
with a Pythagorean triple, X,Y,Z, with X2+y2=Z2, by taking X=(r +-t)/2, 
Y = (t - r)/2, and Z = s. Conversely, each Pythagorean triple generates a three-term 
arithmetic progression of squares by taldng r = X - Y, s = Z, and t = X + Y. Two 
three-term arithmetic progressions of squares have the same difference of terms if, and 
only if, the corresponding Pythagorean right triangles have the same area. The second 
equivalent formulation, P2, of the original problem should now be clear. 

Congruent numbers The square-free part of XY/2 (the result of dividing XY/2 
by the largest possible integer square), where X, Y, Z is a Pythagorean triple, is (by 
definition) a congruent number. This is clearly also the square-free part of the 
difference between terms of the associated three-term arithmetic progression of 
squares. 

It is more convenient to work with right triangles with square-free area. Note that if 
k is the largest integer such that k2 divides XY/2, then the area of the triangle with 
sides X/k, Y/k, and Z/k is a square-free integer. In general, X/k, Y/k, and Z/k 
will not be integers. 

Elliptic curves If n is a congruent number, there is a well-known mapping from 
rational right triangles with area n to rational points on the elliptic curve y2 = X - n2x 
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given by 

x = (Z/2)2, y = (X2 - Y2) Z/8. 

Koblitz [5] shows that for each such point, P= (x, y), there is another rational point, 
Q, on the elliptic curve such that 2Q = P in the sense of the group structure (briefly 
described below) for points on elliptic curves. Conversely, each rational point on the 
elliptic curve that is the double of another point (except the point at infinity) 
corresponds to a rational right triangle with area n. See Koblitz [5] for further details 
on the correspondences between points on such elliptic curves and Pythagorean 
triples. The third equivalent formulation, P3, of the original problem should now be 
clear. 

A group structure on an elliptic curve is described as follows. An elliptic curve 
consists of the points (x, y) that satisfy the defining equation, plus a point at infinity, 
which can be thought of as lying an infinite distance above the point (0,0). The 
inverse, or negative, of a point P= (x, y) on the elliptic curve is the point -P = 
(x, - y). The point at infinity is its own negative and is also the identity element for 
the group operation. Every vertical line intersects the point at infinity, and these are 
the only lines that intersect the point at infinity. If a line is tangent to the curve at 
some point, consider the line to intersect the curve twice there, unless the line is 
tangent to the curve at a point of inflection, in which case consider the line to 
intersect the curve three times at that point. With these conventions, if a line 
intersects the curve twice then the line intersects the curve exactly three times. This 
fact can be used to define a group operation, @D, by taking P @D Q @D R = 0 if P, Q, 
and R lie on the same straight line. That is, PEDQ= -R if P, Q, and R are 
collinear. To determine P ED P( = 2 P) for a point other than the point at infinity, take 
the tangent through P, find the other point of intersection with the curve, and take 
the negative of this last point. If P and Q have rational coordinates, then P D Q will 
have rational coordinates. It is easy to see that E@ is commutative, that each group 
element has an inverse, and that the identity behaves as it should. That @D is 
associative is more difficult. See Koblitz [5], or other references on elliptic curves for 
more details. The operation @D, as we have defined it, is not the only way to define a 
group structure on the elliptic curve (see Cassels [6]). 

There is a relationship between the doubling of points on elliptic curves and the 
method given above to generate a new three-term arithmetic progression of squares 
from a given one. Namely, if the point P corresponds to the three-term arithmetic 
progression u2, v2, w2, then 2 P corresponds to the three-term arithmetic progression 
generated by (*) with p = v2 and q = v2 - u2. 

One potential usefulness of the elliptic curve formulation is that, for a given 
congruent number n, the group structure of rational points on elliptic curves shows 
there are infinitely many candidates for terms in the needed arithmetic progression. 
Thus, one can list as many candidates as one wants. Ideally, one "solves" the elliptic 
curve, finding points that generate all rational points on the curve. Failing this, one 
can often at least find some integral or rational points on the elliptic curve, and use 
these to generate others. My experience has been that there usually are several 
integral points with x values between -n and 0, from which other points can be 
found. 

Elliptic curves of high rank might be more likely than curves of lower rank to have 
three points meeting the conditions of formulation P3. (It is a theorem [5] that the 
group of rational points for an elliptic curve is TX zr where T is the subgroup 
consisting of all elements of finite order. The rank is r.) Wada and Taira [7] compute 
the ranks of all elliptic curves of the form y2 = X3 - n2x for all but 77 congruent 
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n < 10,000. The curve has rank three for n = 1254, 2605, 2774, 3502, 4199, 4669, 
4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, and 9654. Noda and Wada [8] has a 
table that is an essential part of the results given in [7]. 

Martin Gardner ([9, 10]) also discusses this problem and gives some related results. 
He offers $100 to the first person who constructs a three-by-three magic square of 
distinct squares. 
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1. Russian roulette Russian roulette provides a standard exercise in probability. 
Let us quote from [1], p. 32: 

Russian roulette is played with a revolver equipped with a rotatable 
magazine of six shots. The revolver is loaded with one shot. The first 
duellist, A, rotates the magazine at random, points the revolver at his head 
and presses the trigger. If, afterwards, he is still alive, he hands the 
revolver to the other duellist, B, who acts in the same way as A. The 
players shoot alternately in this manner, until a shot goes off. Determine 
the probability that A is killed. 

The answer is 6/11. 

This content downloaded from 74.212.171.203 on Tue, 18 Nov 2014 02:53:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 69, NO. 4, OCTOBER 1996 293 

n < 10,000. The curve has rank three for n = 1254, 2605, 2774, 3502, 4199, 4669, 
4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, and 9654. Noda and Wada [8] has a 
table that is an essential part of the results given in [7]. 

Martin Gardner ([9, 10]) also discusses this problem and gives some related results. 
He offers $100 to the first person who constructs a three-by-three magic square of 
distinct squares. 

REFERENCES 

1. Richard Guy, Unsolved Problems in Number Theory, 2nd edition, Springer-Verlag, New York, 1994, 
Problem D15, pp. 170-171. 

2. Martin LaBar, Problem 270, College Math. J., 15 (1984), 69. 
3. Martin Gardner, Riddles of the Sphinx, Mathematical Association of America, Washington, DC, 1987, 

pp. 136-137. 
4. Leonard Eugene Dickson, History of the Theory of Numbers, Volume II, Chelsea, New York, 1952. 
5. Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd edition, Springer-Verlag, New 

York, 1993, pp. 1-50. 
6. J. W. S. Cassels, Lectures on Elliptic Curves, Cambridge University Press, Cambridge, UK, 1991, pp. 

27-31. 
7. Hideo Wada and Mayako Taira, Computations of the rank of elliptic curve y2 = X3 - n2x, Proc. Japan 

Acad., 70, Ser. A (1994), 154-157. 
8. Kazunari Noda and Hideo Wada, All congruent numbers less than 10000, Proc. Japan Acad., 69, Ser. A 

(1993), 175-178. 
9. Martin Gardner, The magic of 3 X 3, Quantum, 6 (1996), January/February, pp. 24-26. 
10. Martin Gardner, Letters, Quantum, 6 (1996), March/April, p.60. 

General Russian Roulette 

GUNNAR BLOM 
Department of Mathematical Statistics, University of Lund, 

Box 118, S-221 00 Lund, Sweden 

JAN-ERIC ENGLUND 
Swedish University of Agricultural Sciences, 

Box 35, S-230 53 Alnarp, Sweden 

DENNIS SANDELL 
Biostatistics and Data Processing, Astra Draco AB, 

Box 34, S-221 00 Lund, Sweden 

1. Russian roulette Russian roulette provides a standard exercise in probability. 
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2. Generalization In this article we will consider the following generalization. 
There are n participants A1, A2, . . ., An, where n ? 2. Each person has one revolver. 
At each trial the probability is p that a shot goes off, independently of what happens 
at other trials. The participants shoot in circular order 

A1A2 ... An A1A2... All.... 

First, A1 uses his revolver, and either dies or survives. Thereafter, A2 uses his 
weapon, and either dies or survives, and so on until one person is left; he is the 
winner. We want to determine the probability Pi, i = 1,2,... ,n, that Ai is the 
winner. 

In order to avoid unpleasant associations in our subsequent discussions, we will now 
replace the revolvers with coins, which turn up heads with probability p and tails with 
probability q = 1 - p. When a player tosses his coin and obtains heads, he disappears 
from the list A1 A2 ... A. A1 A2 .... The last person remaining on the list is the 
winner. 

3. Two players Let two people play. If A1 obtains heads at the first toss, he 
disappears and A2 is the winner. If A1 obtains tails, the roles of the players become 
interchanged. These arguments lead to the relation 

P12 = p 0 + q( - P12), 

and so we find 

P12=+qq P221+q 

If p = 1/6 we obtain classical Russian roulette with the probabilities 5/11 and 6/11, 
respectively. 

4. First recursive solution For any number of players, the Pin's can be found 
recursively, beginning with two players, thereafter continuing with three, and so on. 

(a) Three players. 
The players toss in the order A1 A2 A3 A1 A2 A3.... There are two main cases: 

(i) The first toss results in heads. Player A1 disappears. Players A2 and A3 remain, 
and for the rest of the game they take the places of A1 and A2, respectively, in 
the problem for two players. 

(ii) The first toss results in tails. Players A1, A2, A3 remain, and for the rest of the 
game they take the places of A3, A1 and A2 in the original problem for three 
players. 

Applying these considerations three times, we obtain the system of equations 

P13 = p 0 ? + qP33 

P23 = PP12 + qP13 

P33 = PP22 + qP23 
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We already know P12 and P22, so solve the system with respect to P13, P23 and P33. 
The solution is 

J?_ Pq + . .qq 
13 = +q +q+q2 

1 +q +q2 

q2 
P33 = I+ q + 2 + + q +q2 

(b) Four players. 
When four players participate, we first solve the problem for three players and 
determine the P4'S from the system of equations 

P14 = p 0+ qP44 

P24 = pP13 + qP14 

P34 = PP23 + qP24 

P44 = pP33 + qP34. 

It is now clear how the problem is solved for any given number of players: 
We have P1, = qP 111 and 

Pi =pPi-1,t1-1 + qPi-,11, 

where i2, ..., n. 

5. Second recursive solution We begin the second recursive solution by con- 
structing a recursion for Plg. 

If at the first toss A1 obtains heads, he does not win the game; on the other hand, if 
he obtains tails, he will appear at the beginning of the second round. Suppose that 
there are k + 1 people on the list after the first round. This happens if k of the 
players A2,..., A,, obtain tails during the first round; according to the binomial 
distribution this happens with probability 

(n - Iqkp n-l-k 

On the other hand, when there are k + 1 people on the list, the probability that, 
counted from the second round onwards, A1 wins the games is P1, k + 1 Summing over 
the binomial probabilities we obtain the recursion 

n-I X 

Pl,, q E k- q pn-- Pl,k+l ' 
k=O 

starting with Pl1 = 1. 
We are now able to construct a recursion for Pi, i 2 2. Suppose that, in the first 

round, k of the players A1,..., Ai-, obtain heads. This happens with probability 
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When Ai tosses his coin in the first round, he is first in a game with n - k people, so 
he wins with probability P1 t- k Summing over the binomial probabilities, we obtain 
the recursion 

i-i 
/k 

\ 
l- 

Pin = ( k Jpkqi 1 kp17n-k 
k=O 

By first computing a suitable number of Plj's, we are able to find Pi,, for any i ? 2 
and n. 

This recursive method requires a smaller number of operations than the method 
described in the previous section. 

6. Explicit solution We will now derive an explicit expression for the probability 
Pill that Ai wins. Let us then suppose that the game is prolonged until the winner, 
though being alone, goes on tossing until he obtains heads. In the main part of the 
solution we will assume that 1 < i < n. 

Let Bj be the event that Ai obtains heads for the first time in the (j + 1)st round, 
where j = 0,1,.... (Remember the prolongation of the game.) The events Bj are, of 
course, disjoint, and we have P(B) = qjp. If Bo occurs, Ai can never win, so we 
exclude this case. Given that Bj, j > 0, occurs, Ai wins if the following events Cj and 
Dj occur: 

Cj: Players A1, A2,..., Ai-1 obtain heads before Ai, that is, in the (j + 1)st round 
or earlier. 

Dj: Players Ai+1, Ai+2,..., A,, obtain heads before Ai, that is, in the jth round or 
earlier. 

The probability that A1, say, obtains heads at the (j + 1)st round or earlier is 
1 - qj+l. Hence we have 

P(Cj) = (1 - qj+1 )i- 

Similarly we find 

P(Dj) = (1 - qj)l-i 

The three events Bj, Cj and Dj are independent. Summing over j we obtain 

00 00 

Pi,= EYP(BjCjDj)= EP(Bj)P(Cj)P(Dj), 
j=1 j=1 

and so we arrive at the final expression 

00 

Pitll=p E (I-qj+l)i- 1(I _qj)n-i j(1 

j=1 

We leave it as an exercise to the reader to verify that this expression holds also for 
i = 1. For i = n the summation runs from 0 to oo. 

It follows from (1) that if 0 < p < 1 then P1ln < P2n < < P,n. This is no surprise: 
Remember that A1 begins and hence has the smallest chance to win. We also note 
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that Pll = qP,,,,; this also follows directly from the recursive relations at the end of 
Section 4. As a consequence, when p is small and q is therefore near 1, the Pi,,'s are 
almost equal. 

7. Asymptotics Russian roulette with very many people involved seems unlikely. 
Nevertheless, friends of asymptotic solutions may like to study the behavior of (1) 
when n is large. 

For example, when i = 1 it is found that 
00 

P1 =p (-qj)lqlj 

j=1 

Replacing the sum with an integral and performing the integration we obtain 

p -_. P 
DI nlnq 

More generally, we have 

pill I q .n -(i- p 

The approximations become better when n grows and/or p decreases; see Table 1 
for some very good values for n = 5. 

TAB LE 1 . Exact and approximate wvinning probabilities for the two cases 
n = 5, p = 1/6 and n = 5, p = 1/2. 

Pi5 p=1/2 

Exact Approx. Exact Approx. 

1 0.1828 0.1828 0.1447 0.1443 
2 0.1904 0.1891 0.1628 0.1603 
3 0.1989 0.1959 0.1862 0.1803 
4 0.2084 0.2031 0.2169 0.2061 
5 0.2194 0.2110 0.2894 0.2404 
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 Parallels on the Sphere

 J. SCHAER
 University of Calgary

 Calgary, Alberta, Canada T2N 1 N4

 In the plane, parallels are usually defined as lines that do not meet. On the sphere,
 what corresponds to a line in the plane is a great circle, a straightest possible curve.
 And since any two distinct great circles intersect in two antipodal points, there are no
 parallels on the sphere. (In projective geometry antipodal points are identified, so any
 two distinct "lines" always intersect in exactly one "point.")

 One can define a parallel to line L in another way, as the locus of all points on one
 side of L that have a constant distance from L. This definition would make the
 famous parallel axiom a theorem if we knew that such a parallel was a line. On the
 sphere that locus is not a great circle but rather a parallel circle.

 A third way to define a parallel uses area: The locus of all points P on one side of
 the line AB, that form a triangle ABP with given fixed base and constant area. Since
 the base is fixed, the height of the triangle must be constant, and we fall back to the
 second definition. On the sphere, the area of a triangle is not simply half of
 base x height and so this "parallel" is a different curve.

 THEOREM. Given a sherical triangle ABC (with all sides < Tr). If P is any point
 on the circular arc ACB, where A, B are the antipodal points of A, B, then the
 triangles ABP and ABC have equal area.

 Proof: (See FIGURE.) a = a, + e, 8 = 81 + e; but a2 = a1,, 2 = 81, and a2 + I82
 + y = T. So a + + y = a2 + e + 82 + e + Y = X + 2 , hence the area of the trian-
 gle ABC is 2 E. This area depends only on the locations of A and B, and on e; hence
 if P is on the circular arc ACB then the triangle APB has also area 2 E. So the
 circular arc ACB is the "parallel" (in the third sense) through C of the "line" AB.

 F

 FIGURE
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On the Convergence of Hillam's 
Iteration Scheme 
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In their excellent paper [1] on digital halftoning, Geist, et al., develop an interesting 
approach to neural network simulation. In this context they reaffirm a conjecture on 
the convergence of a certain numerical iteration scheme originally due to Hillam, 
cf. [2), since they found substantial numerical evidence supporting it. In this note we 
prove the conjecture under a more restrictive condition than the one given in [1]. 
Moreover, we present a numerical example providing evidence that the original 
conjecture does not hold. 

1. Hillam's Theorem In [21, Hillam established the following, at first sight remark- 
able, result for functions on the real line: 

1.1. THEOREM. Iff: [a, bi -] [a, b] satisfies a Lipschitz condition with constant K, 
i.e., if 

If(x) -f( y) < Klx-yI 
holds for all x, y in [a, b], then the iteration scheme 

xt + = (1- A) x, + Af( x,,) 

where A = 1/(K + 1), converges to a fixed point off.' 

On the conjecture that this result might extend to higher dimensions, Hillam noted 
that a completely new approach would be needed, since his proof relied heavily on the 
total ordering of the real line. In [1] Geist, et al., restate this conjecture and offer 
numerical evidence for its support. As generalization of the Lipschitz condition they 
use 

If(x) -f( y)lmax < Klx-y Imax (1) 

where I I max denotes the maximum norm on R'. In order to deal with Hillam's 
remark, first we define a new function F: [a, b] -3 [a, bI by 

F(x) := (1-A)x + Af(x). 

The iteration scheme may then be rewritten as 

X11+1 = F(xtl). 

With this definition of F we obtain 

1.2. LEMMA. F is monotonically increasing. 

1Note: We are only concerned with the case K > 1 since otherwise there are iteration schemes known 
that converge to a fixed point; cf. [3]. 
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Proof Suppose x ? y. Then we have 

f(y)-f(x) < lf(y)-f(x)l < Kly-xl = K(x-y). (2) 

Setting A= 1/(K + 1) as before, we get K = (1 - A)/A and thus inequality (2) 
reduces to 

(1-A)x+Af(x) 2 (1-A)y+Af(y). (3) 

Inequality (3) says that F(x) ? F(y). 

We observe as a somewhat surprising effect that the Lipschitz condition on f 
implies the monotonicity of F. Now, of course, Hillam's result seems rather less 
unusual in view of the well-known Tarski fixed-point theorem for lattices, cf [4]. As 
far as the convergence of our iteration scheme is concerned, we obtain from (1.2) the 
following. 

1.3. LEMMA. The sequence (x,,) defined inductively by 

xo a 

x11+1 := F( x,,) 

converges to a fixed-point x of F, which is also a fixed-point for f. 

Proof: F(a)2a by the definition of F. Hence x1?xo and thus F(xl)=x2? 
F(x0) = x1 by monotonicity of F. By induction, x,,+1 2 x,, for all n. Since a bounded 
monotonic sequence converges, lim It- x,i = x exists. From the continuity of F, 
which is a consequence of the continuity of f, which in turn follows from the 
Lipschitz condition, we clearly have F(x) = x. Finally we compute f(x) = x from the 
definition of F. 

Note at this stage that the result of (1.3) is slightly weaker than Hillam's result since 
we have to start with x0 = a. On the other hand, the proof imitates the proof of 
Tarski's fixed-point theorem, and admits an easy generalization to higher dimensions 
since it does not use the fact that the real line is totally ordered. 

2. A generalization of Hillam's result Let us first fix some notation: For x:= 
(x1, x2. x,,) E Dl" we set 

lxv12 VI = (lX1, I lX21, ,IIXtal EI t 

Moreover for a := (a1, a2.. ., a,,) and b := (b1, b2, . . , btl) ED R" we define [a, b] 
{(x1, x2, --. - x,,) E IR" lai < xi < bi for 1 < i < n}. Further let the partial order relation 
on III" be defined as usual, i.e., 

(x1, x2,..., xI) < (Y1, y2. Y,,) 
if, and only if, 

xi < Yi for 1 < i < n. 

Then we say that a function g: R" -* R" satisfies a modified Lipschitz condition with 
constant L if 
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With these definitions we can easily prove the following generalization of Hillam's 
result to n dimensions. 

2.1. THEOREM. Suppose that g: [a,hbI -[a,b] satisfies the modified Lipschitz 
condition (4). Then the iteration scheme defined by 

xO a 

x11+1 = (1- ,)x11 + ttg(Xn) 

where ,= 1/(L + 1), converges to a fixed-point x of g. 

Proof. Repeating the calculations of 1.2, we see that the function G defined by 
G(x):= (1 - ,)x + ,ug(x) is monotonic with respect to the partial order defined on 
Rt". This in tum immediately implies that the sequence 

xO a 

xn+1 = G(x.) 

is monotonically increasing (as in 1.3). Hence all coordinate sequences are monotoni- 
cally increasing and thus convergent and so lim,, -. x,, = x exists. By continuity again 
x must be a fiLxed-point for G and thus for g. 

Remark 1. Our modified Lipschitz condition is one possible "natural" extension of 
the 1-dimensional Lipschitz condition. Unfortunately, it is obviously stronger than 
condition (1) that was suggested in [1]. Nevertheless, we feel that it makes sense to 
use it, since it guarantees the monotonicity of the function G as in the 1-dimensional 
case, which is crucial for convergence. Indeed, one might well ask, whether mono- 
tonicity would not be a more natural condition to use in the first place! 

Remark 2. Functions satisfying the modified Lipschitz condition (4) may easily be 
constructed as follows. Let gi: [ai, bil -- [ai, bil be functions satisfying the Lipschitz 
conditions Igi(x) - gi(y)l < Lilx - yl. Let 7ri: RI" -- R be defined by 
ri(Xl, x2,..., xn)= xi, and let L be given by L:= max, Li. Then 

9(1x) = 
91(gl(l71 )), g2(g72( X))> 

I ' ' gn(otn( X))) 

obviously obeys condition (4). 

3. Numerical evidence against the Hillam conjecture Since our modified 
Lipschitz condition (4) seems rather restrictive, we shall provide numerical evidence 
against the original conjecture using a function g: [a[a a, in R 2, where 
a := (0, 0) and b = (1, 1). We define g as follows. Let 

I 1-3x for 0 < x <I 
fi(x) :=R fo3< for < x ? 1 

f2(x) := sin(rx) for 0 < x < 1 

and set 

g(x1, x2) = (f1( x2),f2(x1)). 

Then g satisfies the Lipschitz condition 

Ig(x) -g( Y)Imax < Til- YImax. 
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Using the value 3.141592654 for 7r we find that the function 

G(x) = (1- A)x + g(S), 

where 

(+ 1 

gives rise to a sequence defined inductively by 

XO = (0,o) 

Xt + -= G(Xn). 

The sequence begins to cycle for n - 250 through the nine different values given by 

(0.0922915121,0.247146055), 

(0.132437981,0.25650258), 

(0.156113482,0.29215620), 

(0.148246434,0.335343035), 

(0.112451887,0.362803981), 

(0.0853000404,0.358740632), 

(0.0647040891,0.336054069), 

(0.0490810923,0.303656586), 

(0.0587269346,0.267420753). 

This somewhat surprising result provides strong numerical evidence that Hillam's 
conjecture does not hold if the Lipschitz condition is defined using the maximum 
norm. 

Concluding Remark. It would be most interesting to find other conditions that 
guarantee convergence of the iteration scheme since 2.1 doesn't seem to cover the 
special case considered in [1]. 
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1504. Proposed by Erwin Just, emneritus, Bronx Community College, Bronx, New 
York. 

For which positive integers n does there exist a set of n distinct positive integers 
such that 
(i) each member of the set divides the sum of all members of the set, and 
(ii) none of its proper subsets with two or more elements satisfies (i)? 

1505. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada, 
and Cecil C. Rousseau, The University of Memphis, Memphis, Tennessee. 

Let a and b be positive numbers satisfying a + b 2 (a - b)2. Prove that 

xa(l X)b +xb(I -x) < 2aIb1 

for 0 < x < 1, with equality if and only if x = 1/2. 

1506. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He 
Nan Province, China. 

Let I and 0 denote the incenter and circumcenter, respectively, of A ABC. 
Assume A ABC is not equilateral. Prove that L AIO < 900 if and only if 2 BC < AB + 
CA, with equality holding only simultaneously. 

1507. Proposed by Howard Morris, Ridgeland, Mississippi. 

For what real values of a and bo does the sequence (bn),, ?0 defined by b,1+I = eab 
converge? 

We invite readers to submit problems believed to be new and appealing to students and teachers of 
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any 
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail 
address. 
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1508. Proposed by Saul Stahl, University of Kansas, Lawrence, Kansas. 

Let det,, denote the determinant of the n X n matrix whose entries are indepen- 
dent random variables each of which has value 1 with probability p and value 0 with 
probability 1 - p. Compute the mean and variance of detn for each positive integer n. 

Quickies 
Answers to the Quickies are on page 000. 

Q853. Proposed by S. B. Karmakar, Piscataway, New Jersey, and Murray S. 
Klamnkin, University of Alberta, Edmnonton, Canada. 

Are there any positive integral solutions to the Fermat-type equation 

Xm/3 +ym/3 = m/3 

where in > 3 is a given positive integer relatively prime to 3? 

Q854. Proposed by Eugene Sard, Huntington, New York. 

In acute triangle ABC with sides AB < AC < BC, which of the three inscribed 
squares has largest area? 

Q855. Proposed by Jens Peter Reus Christensen and Mogens Esromn Larsen, 
Kobenhavns Universitet, Kobenhavn, Denmnark. 

For positive integers in and n, prove that 
4n -3 

E ee21rik'/(4l-2) = 0 

k=o0 

Solutions 

A Recursive Optimization October 1995 

1479. Proposed by Donald E. Knuth, Stanford University, Stanford, California. 

Let inl, be the maximum value of the quantity 
x1 

_+ - - + Xn 
(1+X1 + X2 + +X,)2 (1 + X2 + .. +x)a)2 + X11)2 

over all nonnegative real numbers (xl,...) x.). At what point(s) does the maximum 
occur? Express in,, in terms of m,,.., and find lim,,l, mn7. 

This content downloaded from 66.194.72.152 on Wed, 31 Jul 2013 23:49:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


306 MATHEMATICS MAGAZINE 

Solution by David Zhu, Jet Propulsion Laboratory, Pasadena, California. 
Consider 

a x 
g(X) = x+b + (x + b)2X 

where a 2 0 and b 2 1. Then g(x) attains its (absolute) maximum (1 + a)2/(4b) at 
x = b( - a)/(1 + a). 

Let 

fn(xx x>. .. >xtl 
fll(~~~~~~ Xl +2 X aX +. , , 

(1 + Xl1 X2 + ... 
tX.)2 ( +X2 + ..-... +X,)2 (I +Xjj2 

Fix x2, X3,.., X i, I and view fn as a- function of xl. Its maximum value is 

(1 +a,)2 1 X2 xn 
4 1 + x2 + ... +X +X2+-- +x1)2 (1 + X2 

for xl =(1 + x2 + -- +x,,)(l - aj)/(1 + a1), where a, = 0. 
As a function of x2, the above expression attains its maximum value, 

(1 +a2)2 1 + Xn 
4 1 +X3 + -- +Xn (1+X3 + ..2+xn) (I +X 

at x2 (1 + x3 + -- +xXl - a2)/(1 + a), where a2 = (1 + a1)2/4. 
Repeating this process leads to 

(I+a._-, 1 + xi 

4 1+xn (I+xn)2' 

which attains its maximum value, ( + a1)2/4, at x = (1 - a)/(l + an), where 
a,, = (1 +a.-, )2/4. 

Thus, a,,+1 is the maximum value of fn, where a11 is defined by 

a1 =0, and a,+1= 
( a 

11), for n21. 

The maximum of fn occurs at the point (x1, x2,. .., x) which satisfies 

1 - a. 
X = 

(1I+ 
- an l 

X n-1i( +X 
_ 1<+Hnc X-l + X2+ - 

+X,,) la, 

It is easily verified that an, > an_ and O < an < 1 if O < an1 - 1 < 1. Hence, xl1, x2, . ,xn 
are nonnegative. Since (an) is a bounded and monotonically increasing sequence, it 
converges. Let limn1 o a11 = a. Thus a satisfies a = (1 + a)2/4, which implies a = 1. 

This content downloaded from 66.194.72.152 on Wed, 31 Jul 2013 23:49:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 69, NO. 4, OCTOBER 1996 307 
Also solved by Anchorage Math Solutions Group, Rich Bauer, Robin Chapman (U.K.), Con Amore 

Problem Group (Denmark), Steve Deckelman, Robert L. Doucette, L. R. King, M. S. Klamkin (Canada), 
Bogdan Kotkotvski, 0. P. Lossers (The Netherlands), Heinz-Juirgen Seiffert (Germany), WMC Problems 
Group, and the proposer. There were two incomplete solutions and one incorrect solution. 

A Partition Identity October 1995 

1480. Proposed by Ron Rietz and John Holte, Gustavus Adolphus College, St. Peter, 
Minnesota. 

Prove that 

n il ik-1 k r - l+ 

E E ... E ril+i2+ +ik= H r 
i1=? i2=O ik=O j=1 rJ 

for r 1, k = 1, 2,3, ... , and n = 0, 1, 2,... . 

Solution by F. C. Rembis, Clifton, New Jersey. 
For notational simplicity let 

n il ik..1 k rn J 
a(k, n)= , E ... Eril+i2+ +ik and wr(k,n) = f H1 

i1=0 i2=? ik=O j=1 -r 

We will show o(k, n) = r(k, n) by induction on k + n. The cases when k = 1 or 
n = 0 are easily checked, which include the case k + n = 1. Suppose cr(l, m) = jr(1, m) 
for 1+mn<k +n. Since 

c(k, n) = cr(k, n - 1) + rnr(k - 1, n) 
= 7'(k,n- 1) +rnr(k- 1,n), 

for k > 1 and n > 0, we need to show ir(k, n) - r(k, n - 1) = rnm(k - 1, n). Now 

1 -rn+k I r' 1T(k, n) = l T7(k - 1, n) and 7r(k, n - I) = k7r(k - 1, n), 

so 

rr(k,n) - 7r(k,n- 1) = kr-k - rk 1n) 

= rnr(k - 1, n), 

and the proposition holds. 

Comnent. Harald Fripertinger points out that the coefficient of rJ in the expansion 
of the left-hand side is the number of partitions of j into at most k parts such that the 
largest part is at most n, and that the right-hand side is the product expansion of the 
q-binomial coefficient, citing Proposition 1.3.19 of R. P. Stanley's Enumerative 
Combinatorics for a proof of the equality. 

Also solved by Anchorage Math Solutions Group, Michael H. Andreoli, Nirdosh Bhatnagar, David 
Callan, Robin Chapman (U.K.), Con Amore Problem Group (Denmark), Qais Haider Darwish (Oman), 
Jesse I. Deutsch, Robert L. Doucette, Harald Fripertinger (Austria), Brad Gubser, Bogdan Kotkowski, 
Kee-Wai Lau (Hong Kong), 0. P. Lossers (The Netherlands), Can A. Minh (student), Jean-Claude 
Ndognw (Cameroun) and Pavel Winternitz (Canada), Michael Vowe (Switzerland), and the proposer. 
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A Characterization of Constant Acceleration October 1995 

1481. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

It is known that if a point moves on a straight line with constant acceleration and 
S1,S2, S3 are its positions at times tl, t2, t3, respectively, then the constant acceleration 
is given by 

2 (S2 - S3)tl + (S3 - s1)t2 + (s-S2 )t3- 

(tl -t2W(2 -t3W(3 tl) 

Show that this property characterizes uniformly accelerated motion; that is, if a 
particle moves on a straight line and Sl, S2, s3 are its positions at any times tl, t2, t3, 
respectively, then if 

(S2- S3 ) tl + ( S3 -Sl ) t2 + ( 1- S2 ) t3 Cosat (tl - t2 t2 - t3)t3tl) =-constant, 

the motion is one of constant acceleration. 

Solution by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana. 
Fix t2 # t3. Then 

(S2-s3)t + (s3-S)t2 + (S -S2)t3 a 
(t-t2)(t2-t3)(t3-t) 2 

for some real number a and t # t2, t3, where s is the position corresponding to time 
t. Then, (S2 - s3)t + (S3 - s)t2 + (s - s2)t3= (a/2)(t - t2)(t2 - t3)(t3 - t) for all t. 
Solving for s yields a quadratic in t, so the given motion is one of constant 
acceleration with s" = a. 

Also solved by Anchorage Math Solutions Group, Stanley J. Becker, Joseph E. Chance, Robin Chapman 
(U.K.), John Christopher, Con Amore Problem Group (Denmark), Robert L. Doucette, Mordechai 
Falkowitz (Canada), Bogdan Kotkowski, Nick Lord (England), Jean-Claude Ndogmo (Cameroun) and 
Pavel Winternitz (Canada), F. C. Rembis, Xavier Retnam, Nora S. Thornber, Michael Vowe (Stvitzerland), 
Robert J. Wagner, WMC Problems Group, David Zhu, and the proposer. 

Perfect Numbers in Terms of Triangular Numbers October 1995 

1482. Proposed by C. F. Eaton, Pepperell, Massachusetts. 

Show that all even perfect numbers, P > 6, are of the form P = 1 + 9T., where T, 
is a triangular number of the form Tn = n(n + 1)/2, n = 8j + 2. 

Solution by Bogdan Kotkowski, Kent State University, Tuscarawas Campus, New 
Philadelphia, Ohio. 

Let P be an even perfect number greater than 6. Then there exists a prime number 
p ? 3 such that P = 2 P'-(2 P - 1). Because p -3 is even, 2 P-3 - 1 is divisible by 3. 
A simple calculation shows that 

P=1+94s(8. 22 3 +2)(8.2 3-1 +3). 

Also solved by William B. Adams, Anchorage Math Solutions Group, Rich Bauer, Ryan Buschert 
(student), David Callan, Robin Chapman (U.K.), John Christopher, Con Amore Problem Group (Den- 
mark), Charles R. Diminnie, Robert L. Doucette, Hugh Edgar, Roger B. Eggleton, L. L. Foster, Joe 
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Howard, D. E. Iannucci (Virgin Islands), Hans Kappus (Switzerland), Sidney Kravitz, Vernon J. Kunz, 
Kee-Wai Lau (Hong Kong), S. C. Locke, Nick Lord (England), 0. P. Lossers (The Netherlands), David E. 
Manes, Don Redmond, F. C. Rernbis, R. P. Sealy, Jamie Simpson (Australia), Lawrence Somer, 
Selvaratnam Sridharma, David R. Stone, Michael Vowe (Switzerland), Monte J. Zerger, David Zhu, and 
the proposer. 

A Trigonometric Relation in Triangles October 1995 

1483. Proposed by Alexandru Teodorescu-Frumosu, student, Boston University, 
Boston, Massachusetts. 

Let ABC be an arbitrary triangle, and let a,b,c, be the lengths of the sides 
BC, AC, AB, respectively. Let M be the midpoint of the segment BC, let a = 
L BAM, 3 = L CAM and x = L AMB. Show that 

b acosx 
sin a sin( a--3 ) 

Solution by Catherine Taylor, student, San Francisco University High School, San 
Francisco, California. 

Applying the law of sines to A ACM, we find 

2 sin - sin(r -x) = sin x 
a b b 

Applying the law of sines to A ABC, we find 

sin(a + /3) sin(Qn-(a+x)) = sin(a +x) 
a b b 

or 

sin a cos 3 + sin 3 cos a sin a cos x + sin x cos a 
a b 

Subtracting 2 sin ,3 cos a/a = sin x cos a/b from both sides, we get 

sin a cos 8 -sin 8 cos a sin a cos x 
a b 

or 

sin( a-,/) sin a cos x 
a b 

Dividing both sides by sin a sin(a - 83)/(ab) when a # /3, we get 

b acosx 
sina - sin( a-3) 

Also solved by Reza Akhlaghi, Anchorage Math Solutions Group, John Andraos (Australia), Francisco 
Bellot Rosado (Spain), Kenneth Bernstein, Nirdosh Bhatnagar, J. C. Binz (Switzerland), Robin Chapman 
(U.K.), John Christopher, Con Amore Problem Group (Denmark), Charles K. Cook, Robert L. Doucette, 
Milton P. Eisner, Mordechai Falkowitz (Canada), R. Govindaraj (India), Joe Howard, Paul Irwin, Hans 
Kappus (Switzerland), Jahangeer Kholdi, Bogdan Kotkowski, Victor Kutsenok, Kee-Wai Lau (Hong 
Kong), Nick Lord (England), 0. P. Lossers (The Netherlands), V. S. "Mano" Manoranjan, Robert C. 
Maxell, Shoeleh Mutameni, S. A. Obaid, F. C. Remibis, Noah Rosenberg (student), Alan Shettel, 
Selvaratnam Sridhartrna, Maggie Tran (student), Ian VanderBurgh (Canada), Michael Vowe (Switzerland), 
Harry Weingarten, Andretv Ho Keen Wu, Robert L. Young, Monte J. Zerger, Ted Zerger, David Zhu, and 
the proposer. 
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Answers 
Solutions to the Quickies on page 

A853. There are no positive integral solutions. If there were a solution, there would 
be one with (x, y, z) = 1. On cubing the equation, we get 

x + y + 3( xyz)/3 = z, 

so that xyz must be a perfect cube. Either each of x, y, z must be a perfect cube or 
else two of them have a common prime factor p. In the former case we get Fermat's 
equation which is now known to have no solutions. In the latter case (x, y, z) # 1. 
Consequently, there are no solutions. 

A854. Let hA denote the length of the altitude from A to BC, and let SA be the 
length of the side of the inscribed square with two vertices on BC, and so forth. From 
similar triangles, we see that 

hA-sA SA BC hA 
hA =BC A= BC+hA 

Since BC hA is twice the area of AABC, the largest square corresponds to the 
smallest of BC + hA, AC+hB, and AB + hc. Now, 

(BC+hA)-(AC +hB)= (BC +ACsinZ C)-(AC +BCsinZ C) 
= (BC -AC)(1 -sin/C) > 0. 

Hence SA < SB. Similar reasoning implies SB < Sc, so that the square inscribed on AB 
has largest area. 

A 

B C 

A855. We have 
4n-3 2n-2 
E e2rik'/(4n-2) = E (e21 ik'/(4n-2) +e21ri(k+2n-1)'/(4n-2) 

k=O k=O 

Because (k + 2n - 1) - k = 2n - 1 is a factor of (k + 2n - )- km, it follows that 
(k+2n-1)m-km=2n-1 (mod2n-1). It is clear that (k + 2n - I)m - km 1 

2n - 1 (mod 2) as well. Thus e2ri(k+2n-1)m/(4n-2) = e22ikm/(4n-2), hence 
4n -3 
E e21rikm/(4n-2) = 0 
k=O 
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REVI EWS 

PAUL J. CAMPBELL, editor 
Beloit College 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for 
this section to call attention to interesting mathematical exposition that occurs outside the 
mainstream of mathematics literature. Readers are invited to suggest items for review to 
the editors. 

Conway, John H., and Allyn Jackson, Budding mathematician wins Westinghouse Compe- 
tition, Notices of the American Mathematical Society 43 (7) (July 1996) 776-779. 

Jacob Lurie of Bethesda, Maryland, won first prize in the 1996 Westinghouse Science Talent 
Search, a competition for high-school students. (Unfortunately, the first prize of $40,000 
does not cover even two years of tuition at a leading university.) His paper treats computable 
sets in the surreal numbers, which are the "most natural collection of numbers that includes 
both the usual real numbers and the infinite ordinal numbers." They were discovered by 
author Conway in 1969, who applied them to analyzing combinatorial games. Surreal 
numbers were also featured in Donald Knuth's Surreal Numbers: How Two Ex-Students 
Turned on to Pure Mathematics and Found Total Happiness (1974). Mention of the book 
in historical vein in this column (December 1995: "Older readers (and younger ones who 
have explored the library) will remember ... ") prompted Knuth to advise that not only 
is the book still in print but it also has its own home page, at 

http: //www-cs-f aculty. stanford. edu/-knuth/sn . html 
which offers errata, translations, and hints for some of the exercises. 

Thwaites, Bryan, Two conjectures or how to win ?1100, Mathematical Gazette 80 (March 
1996) 35-36. 

Thwaites reminds readers of his originDtion in 1952 of what has become known variously 
as the 3n + 1 conjecture, Collatz conjecture, and many other names besides the "Thwaites 
conjecture." It says that starting from any positive integer n, iteration of the map 

f3n+1, if nisodd; 
n 

k, if n is even and n = k2"1 with k odd. 

always leads eventually to 1. Thwaites offers ?1,000 reward for resolving the conjecture, 
and ?100 for resolving another conjecture: Given any finite sequence of rational numbers, 
take the positive differences of successive members (including differencing the last member 
with the first); iteration of this operation eventually produces a set of zeros iff the size of 
the set is a power of 2. 

Centenary Issue, Mathematical Gazette 80 (March 1996). 

This issue celebrates 100 years of the Gazette (may all our readers still be enjoying a happy 
retirement when THIS MAGAZINE celebrates its centennial!). Commemorative articles dis- 
cuss production of the Gazette and its history, plus reminiscences and recollections. Notable 
articles survey mathematics teaching and twentieth-century mathematics: Jean Dieudonne 
on "Mathematics of our day," Michael Atiyah on "Geometry and physics," David Lindley 
on statistics in the last 100 years, Peter Neumann on "A hundred years of finite group 
theory," and others. 
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Sterrett, Andrew (ed.), 101 Careers in Mathematics, MAA, 1996; x + 260 pp, $20 (less to 
MAA members). ISBN 0-88385-704-9. 

"What can I do with a major in mathematics?" The answer, of course, is "anything"; only 
9% of male mathematics majors employed in the U.S. work in the mathematical sciences 
(but their average salary is second only to engineers). This is a book that the admissions 
staff of your institution need to pass around and have on their bookshelf (do yourself a 
favor and buy them a copy or two), and that your department needs to have in its common 
room. The book contains two-page first-person vignettes with photos of 101 people in "a 
wide variety of careers for which a background in the mathematical sciences is useful," plus 
articles on career and job-seeking advice reprinted from Math Horizons. Very few of the 
people featured appear to be over 50 (does this suggest that math majors die young?), and 
with one exception all have degrees from U.S. institutions and work in the U.S. William 
Perry (U.S. Secretary of State; Ph.D. in operations research); Alberto Fujimori (President 
of Peru; M.S., University of Wisconsin-Milwaukee), Alexander Solzhenitsyn (Nobel Prize 
for Literature; B.S., University of Rostov), and notables in general are not included, which 
is not to say that a background in the mathematical sciences has not been useful to them 
(e.g., it saved Solzhenitsyn from some forms of prison labor). 

Courant, Richard, and Herbert Robbins, What Is Mathematics? An Elementary Approach 
to Ideas and Methods, 2nd ed., revised by Ian Stewart, Oxford University Press, 1996; xix 
+ 566 pp, $18.95 (P). ISBN 0-19-510519-2. 

Ian Stewart has brought this wonderful classic (first published in 1942) up to date by 
adding a new chapter of several pages each on a dozen topics: polynomials that produce all 
primes and the Jones knot polynomial; progress on the Goldbach conjecture and on soap 
films; proofs of Fermat's Last Theorem, the Four Color Theorem, and the Steiner ratio 
conjecture; the independence of the Continuum Hypothesis, fractals, and the rehabilitation 
of infinitesimals via nonstandard analysis. 

Stewart, Ian, From Here to Infinity: A Guide to Today's Mathematics, Oxford Univ. Pr., 
1996; x + 310 pp, $12.50 (P). ISBN 0-19-283202-6. 

This is a revised and retitled edition of the magnificent The Problems of Mathematics (1987; 
2nd ed., 1992) and complements the Courant and Robbins book above. "The new title is 
supposed to indicate that mathematics combines relevance to everyday life ('here') with 
sweeping intellectual invention ('infinity')." Mathematics majors will find it affordable easy 
reading about exciting contemporary mathematics; ask your bookstore to stock it. 

Cipra, Barry, Lattices may put security codes on a firmer footing, Science 273 (23 August 
1996) 1047-1048. 

Given a lattice in Euclidean n-space, find a set of spanning vectors that have the shortest 
lengths. Milos Ajtai (IBM Almaden Research Center) has shown that there is no efficient 
algorithm for any positive fraction of such problems unless there is an efficient algorithm 
for all of them (and none is known). Hence randomly generated lattices could form the 
basis for digital signatures and authentication (append to your document a lattice problem 
whose solution you know) or even new codes. 

Yam, Philip, Profile: Martin Gardner, The mathematical gamester, Scientific American 
273 (6) (December 1995), 38-41; Puzzling with Martin Gardner, 26. 

Biographical and personal profiles of the amateur magician, self-taught mathematician, 
Lewis Carroll expert, and long-time author of Scientific American's Mathematical Games 
column. Three of his favorite puzzles are included. 
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Cole, K.C., Fairness by the numbers, Los Angeles Times (Washington Edition) (26 April 
1996) Al, A8. Peterson, Ivars, Formulas for fairness: Applying the math of cake cutting to 
conflict resolution, Science News 149 (4 May 1996) 284-285. Brams, Steven J., and Alan 
D. Taylor, Fair Division: From Cake-Cutting to Conflict Resolution, Cambridge Univ. Pr., 
1996; xiv + 272 pp, $18.95 (P). ISBN 0-521-55644-9. Taylor, Alan D., Fair division, 
Chapter 13 in For All Practical Purposes, 4th ed., edited by Solomon Garfunkel, W.H. 
Freeman, 1996. ISBN 0-387-94612-8. 

Agreements on division of marital property or of an estate can falter on the different values 
that parties impute to indivisible goods. Countries in conflict over borders face a similar 
problem. Authors Brams and Taylor offer algorithms for such disputes that result in "envy- 
free" allocations, i.e., allocations in which everyone is satisfied that he or she has received 
more than anybody else. For two or three parties, the procedures are fairly simple; to go 
to four or more involves a great leap in complexity. The key question, however, is: Will a 
population of divorcing couples and their lawyers who are ignorant of-and deeply dislike 
mathematics trust their welfare to mathematical procedures that they do not understand? 
As Robert E.D. "Gene" Woolsey (Colorado School of Mines) has often noted, "A manager 
would rather live with a problem he can't solve than with a solution he doesn't understand." 

Cipra, Barry, A proof to please Pythagoras, Science 271 (22 March 1996) 1669. 

Can the positive integer N be the area of a right triangle with rational sides? The integers 5 
and 6 are, but 1, 2, 3, and 4 are not. The key to this problem lies not in Euclidean geometry 
or elementary number theory but in elliptic curves: Each such right triangle corresponds 
to a rational point on the elliptic curve y2 = X- N2x. Such a curve has either infinitely 
many rational points with y A 0 or none. A particular criterion function is zero in the first 
case. Hence, if the criterion function is nonzero, N is not the area of a right triangle with 
rational sides. The new techniques about elliptic curves that were used in Wiles's proof 
of Fermat's Last Theorem may lead to a proof of the converse, that when the criterion 
function is zero, there is such a right triangle. 

Stewart, Ian, Tales of a neglected number, Scientific American 274 (6) (June 1996) 102-103. 

The number of the title is the plastic number, so-named because of a genesis similar to the 
golden ratio. The plastic number is the limiting ratio of successive terms of the Padovan 
sequence described by the recursion P(ri + 1) = P(ri - 1) + P(n - 2) with initial conditions 
P(O) = P(l) = P(2) = 1. Architect Richard Padovan used the plastic number in design; 
but unlike the golden ratio, the plastic ratio does not seem to have any manifestations 
in nature, and the sequence itself seems have no connections with other mathematics. 
However, the sequence with the same recursion but initial conditions P(0) = 3, P(1) = 0, 
and P(2) = 2, called the Perrin sequence, has an interesting property noticed by Edouard 
Lucas in 1876: If n is a prime, n divides P(n). This result provides a speedy test (in log n 
steps) for nonprimality, but it is still unknown if there can be a composite n- that divides 
P(n) (called a Perrin pseudoprime). 

Kulig, Christopher J., Winning at Quarto!, Mathematics Teacher 89 (5) (May 1996) 374- 
375. 

Quarto! is a relatively new board game played on a 4 x 4 grid. Each of the 16 playing 
pieces displays a different combination of four binary properties: short/tall, light/dark, 
round/square, and solid/hollow. The players take turns placing a piece (chosen by the 
other player!), trying to be the first to create a row, column, or main diagonal of four pieces 
with the same property. Author Kulig shows how to create positions in which neither player 
wins. 

This content downloaded from 130.194.20.173 on Fri, 27 Nov 2015 08:59:04 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Carl B. Allendoerfer Awards - 1996 
The Carl B. Allendoerfer Awards, es- 
tablished in 1976, are made to au- 
thors of expository articles published in 
Mathematics Magazine. The Awards 
are named for Carl B. Allendoerfer, 
a distinguished mathematician at the 
University of Washington, and Presi- 
dent of the Mathematical Association 
of America, 1959-60. 

This year's awards were presented at 
the August 1996 Prizes and Awards 
Banquet, held in Seattle as part of the 
Joint Summer Meetings. 

Judith Grabiner 
"Descartes and Problem-Solving" 

Mathematics Magazine 68 (1995) 
pp. 83-97 

This article deals with a big subject in 
a fascinating way, and the writing is 
superb. The subject is the "method" 
of Descartes. We learn, for example, 
that one of the fundamental and perva- 
sive aspects of the method is working 
backward from an assumed solution- 
the original meaning of the word "anal- 
ysis." Equally fundamental and perva- 
sive is the idea that mathematics con- 
sists of solving problems, not deriv- 
ing logical systems from first principles. 
We see what kind of geometric prob- 
lems Descartes addressed, how he used 
his method to analyze them, and how 
his methods now pervade the practice 
of mathematics-very much as he in- 
tended they should. The article is an 
excellent example of the insight we can 

gain from an historical view of mathe- 
matics. 

Biographical Note. Judith V. Gra- 
biner is currently the Flora Sanborn 
Pitzer Professor of Mathematics and 
Professor of Science, Technology & So- 
ciety at Pitzer College, Claremont, Cal- 
ifornia. Educated at the University of 
Chicago (B.S. (Honors) in 1960) and 
Radcliffe College and Harvard Univer- 
sity (M.A., 1962; Ph.D., 1966), Profes- 
sor Grabiner is a leading historian of 
mathematics, having written two well- 
known books, The Origins of Cauchy's 
Rigorous Calculus, and The Calculus of 
Algebra: J.-L. Lagrange, as well as nu- 
merous articles. The MAA has previ- 
ously honored her with a Lester R. Ford 
Award for an article on Cauchy in 
the American Mathematical Monthly in 
1984. And this is her third Carl B. Al- 
lendoerfer Award, the earlier two for 
an article on the derivative from Fer- 
mat to Weierstrass, in 1984, and an ar- 
ticle on the centrality of mathematics 
in the history of Western thought, in 
1989. Her current work is on the math- 
ematics of Maclaurin. 

Response from Professor Gra- 
biner. I owe this award first to Pro- 
fessor Tatiana Deretsky, who suggested 
the topic and who invited me to speak 
about it at a conference on the 350th 
anniversary of Descartes's Geometry at 
San Jose State University in 1987. I 
would also like to thank Paul Halmos 
and Jerry Alexanderson for their en- 

314 
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couraging words about the talk, and Al- 
fred Bloom (now president at Swarth- 
more) for a valuable debate about 
Descartes's role in European thought, 
which sharpened some of the ideas. I 
again thank the Mathematics Maga- 
zine's referees, who made helpful sug- 
gestions for improvement; my husband 
Sandy for reading several drafts and 
saying "think about the audience,"' nd 
also my precalculus, calculus, and his- 
tory of mathematics students for lis- 
tening to my discussions of problem- 
solving in the Cartesian manner. Fi- 
nally, I thank the Allendoerfer Award 
Committee and the MAA. 

Daniel J. Velleman and 
Gregory S. Call 

"Permutations and 
Combination Locks" 

Mathematics Magazine 68 (1995) 
pp. 243-253 

This article immediately draws in the 
reader with a nice conjunction of com- 
binatorial and analytical reasoning. 
The authors take a simple, practical 
problem and develop the mathematics 
clearly and thoroughly. They bring for- 
ward techniques from diverse fields as 
they need them. The resolution in- 
cludes a number of interesting combi- 
natorial concepts, including asymptotic 
estimates. In particular, calculus and 
discrete mathematics are integrated in 
ways that an undergraduate might find 
surprising and intriguing. The writing 
is lucid and brisk; the reader is swept 
along but is never disoriented. Both the 
solution to the problem and the expo- 
sition are models for how these things 
should be done. 

Biographical Notes. Dan Velle- 
man received his bachelor's degree from 
Dartmouth College in 1976 and his doc- 
torate from the University of Wisconsin 
in 1980. He taught at the University 

of Texas and the University of Toronto 
before joining the faculty of Amherst 
College in 1983. Dan is interested in 
logic, philosophy of mathematics, and 
the foundations of quantum mechanics. 
He is the author of the book How to 
Prove It, and a coauthor, with Joe Kon- 
hauser and Stan Wagon, of the forth- 
coming problem collection Which Way 
Did the Bicycle Go?. In 1994 he re- 
ceived a Lester R. Ford Award for the 
paper "Versatile Coins." 

A native of Hanover, New Hampshire, 
Greg Call completed his A.B. degree at 
Dartmouth College in 1980. He did his 
graduate work at Harvard under John 
Tate, receiving his A.M. in 1981 and 
his Ph.D. in 1986. He taught for two 
years at Tufts University, before meet- 
ing and then joining Dan Velleman at 
Amherst College, where Greg is now 
an Associate Professor of Mathemat- 
ics. With a dozen student members, he 
founded Amherst's Student Chapter of 
the MAA in the spring of 1990 and, ex- 
cept for sabbatical years at Brown in 
1991-92 and Harvard in 1995-96, has 
served as the Chapter's Faculty Ad- 
visor ever since. While his primary 
research interests are in Diophantine 
geometry and algebraic number the- 
ory, Greg is always ready to collaborate 
with his good friend Dan on an inter- 
esting problem-of-the-week. 

Response from Daniel J. Velle- 
man. I am very pleased and honored 
to have been chosen for this award. I 
would like to thank my coauthor, Greg 
Call, for making this project what a 
mathematical collaboration should be: 
an enjoyable and productive exchange 
of ideas leading to a paper that is bet- 
ter than either of us would have written 
alone. 

Response from Gregory S. Call. I 
would like to extend my sincere thanks 
to the MAA and to the Committee on 
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Allendoerfer Awards, in particular, for 
their generous recognition. 

As mathematicians one of our great 
pleasures is working in collaboration to 
solve a challenging problem. Sharing 
our results and, whenever possible, ex- 
plaining how they were discovered is an 
equal joy. Writing "Permutations and 
Combination Locks" gave me the op- 

portunity to enjoy each of these plea- 
sures. In addition, Dan Velleman and I 
tried to provide our students with an 
accessible model of mathematical re- 
searc-h which we hope will encoura,ge 
them to undertake their own investiga- 
tions. I look forward to those inves- 
tigations and the opportunity to share 
them with my collea,gues in the MAA. 

Letters to the Editor 

Dear Editor: 

I thank Josh Nichols-Barrer (Letters 
to the Editor, June 1996, p. 238) for 
bringing to light an error in my article 
Continued powers and a sufficient con- 
dition for their convergence (this MAG- 
AZINE, December 1995, pp. 387-392). 
He points out that since it does not in 
fact violate my convergence condition 
for continued squares, my Example III 
doesn't show that the condition for gen- 
eral powers p > 1 is not necessary. 

As my penance for publicly trans- 
gressing first-year calculus, I offer the 
following replacement for the lightly- 
conceived and ill-fated Example III. 
Consider the continued square 

S = b+2(0+2(b+'2 (o+2 (b+2 (o+2 

with b = 3/(44/3). This fails the con- 
vergence test for a continued square. 
With p = 2, we have R = (p - 

l)/Pp/(P-1) - 1/4, xn = b for n even 
and 0 for n odd, and 

{Xn p _ A [3/(41/3)]2 n even; 
VR J 0 O n odd. 

The dominant subsequence of even 

terms results in an unbounded expres- 
sion, and the test fails. 

However, S is equivalent to the contin- 
ued fourth power 

b +4(b +4(b +4(.), 

which converges by the boundedness 
test: with p = 4, one has R = 3/(44/3) 
and (x,,/R)P"7 - = 1. The contin- 
ued square S therefore converges, but 
since it fails the continued squares con- 
vergence test, the test remains suffi- 
cient but not necessary. 

Dixon J. Jones 
5112 Fairchild Avenue 
Fairbanks, Alaska 99709-4523 
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Dear Editor: 

Lawrence Zalcman has called my at- 
tention to references [2] and [3] below, 
related to the question at the bottom 
of page 92 in my article Inverse prob- 
lems for central forces, this MAGAZINE 
69 (April 1996), pp. 83-93. The answer 
is yes if the surface is smooth ([3]), but 
no in general ([2]). 

He also pointed out the following cor- 
rections. Zagier obtained his proof in 
1982 or 1983, not 1987, and the earlier 
proof required no smoothness assump- 
tion. On page 92, below display (12), 
"integrand" should be replaced by "in- 
tegral." Finally, reference [11] in the 
paper should be [1], below. 

REFERENCES 

1. A. V. Kandraskov, On the unique- 
ness of the reconstruction of certain 
regions from their exterior gravita- 
tional potential, Ill-posed Mathematical 
Problems and Problems of Geophysics, 
Novosibirsk (1976), pp. 122-129 (Rus- 
sian) 

2. John L. Lewis and Andrew Vogel, 
On pseudospheres, Revista Matemnatica 
Iberoamericana 7 (1991), pp. 25-54 

3. Henrik Shahgholian, A characteriza- 
tion of the sphere in terms of single- 
layer potentials, PAMS 115 (1992), 
pp. 1167-1168 

S. K. Stein 
University of California - Davis 
Davis, California 95616-8633 

Dear Editor: 

Two recent MAGAZINE articles ([1] 
and [2]) show that for integers a, < 
a2 < ... < a,7, the product of differ- 
ences 

I (a - ai) 
1?< i < j 9i1 

is evenly divisible by 

JH (ji-i). 
I? <j i ? 

This problem has appeared in the 
USSR Mathematical Olympiad ([3], 
Problenm 62). Readers may also be 
interested to know that when the a' 
are all positive, the quotient counts a 
rather concrete class of combinatorial 
objects: the number of collections of 
7i pairwise disjoint lattice paths (with 
unit steps east or south) joining (Oa.;) 
to (i - 1,i -1) for 1? i < a (see [4]). 

REFERENCES 

1. B. Sury, An integral polynomial, this 
MAGAZINE 68 (1995), pp. 134-135 

2. Robin Chapnman, A polynomial tak- 
ing integeir values, this MAGAZINE 69 
(1996), p. 121 

3. Shklarsky, Clientzov, and Yaglom, 
USSR Olympiad Problenm Book, Dover, 
New York, NY, 1993 

4. Ira Gessel and G6rard Vennot, Bi- 
nomial determinants, paths, and hook 
length formulae, Advances in Matlhe- 
matics 58 (1985), pp. 300-321 

David Callan 
Department of Statistics 
University of Wisconsin - Madison 
Madison, Wisconsin 53706 
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Micro Caic, v e r. 7.0O 
Interactive Calculus Software 
MicroCalc covers almost all topics needed for teaching 
and learning calculus: single variable, several variable, 
differential equations. (Programmed by Harley Flanders) 

MicroCalc is menu-driven; there is no language to learn; 
its input is the way you write mathematics. MicroCalc is 
dedicated to calculus, and has desired calculus topics 
ready to run. Examples: generation of sine and tangent, 
graphs of Riemann sums, solids of revolution by slabs 
and by shells, implicit curves and surfaces, Newton steps 
for solving equations, graphical Lagrange multipliers. 
About 70 other topics, symbolic, numerical, graphical, 
are on MicroCaic's menus, plus several utilities. 

MS-DOS platform only. 3.5" diskette with installprogram. 

Site license fees: 
First 50 workstations: $850; up to 50 additional: $10 each; 
still more workstations: $5 each. Upgrade from previous 
version: 40% off. (First class mail free. Express mail at cost.) 

Sample disk. 
$15 paid in advance; $25 by purchase order. 

Purchase orders: 
(Please include the full name of the licensing school/department.) 

MathCalcEduc Federal EIN: 38-2740157 
1449 Covington Drive Telephone: 313 761 4666 
Ann Arbor, MI 48103-5630 
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Vrita Mathematica 
Historical Research and 
Integration with Teaching 
Ronald Calinger, Editor 

The use of the history of mathematics in the 
teaching of mathematics at all levels is an idea 
whose time has come. To use history in the 
teaching of undergraduate mathematics, the 
instructor must be familiar with the history as 
well as the mathematics. Vita Mathematica will 
enable college teachers to learn the relevant histo- 
ry of various topics in the undergraduate curricu- 
lum and help them incorporate this history in 
their teaching. 

For example, should calculus be approached 
from a geometric or an algebraic point of view? 
The book shows us how two important eigh- 
teenth century mathematicians, Colin Maclaurin 
and Joseph-Louis Lagrange, understood the calcu- 
lus from these different standpoints and how their 
legacy is still important in teaching calculus 
today. We also learn why Lagrange's algebraic 
approach dominated teaching in Germany in the 
nineteenth century. Some of the reasons for this 
are related to the appropriate foundations of the 
calculus, and so the book traces the ancient histo- 
ry of one of the possible foundations, the concept 
of indivisibles. Even though we generally do not 
use this concept formally today, many ideas for a 
heuristic approach to the calculus can be devel- 
oped out of his study. 

Vita Mathematica contains numerous other 
articles dealing with calculus, with algebra, com- 

binatorics, graph theory, and geometry, as well as 
more general articles on teaching courses for 
prospective teachers. 

This volume, then, demonstrates that the his- 
tory of mathematics is no longer tangential to the 
mathematics curriculum, but in fact deserves a 
central role. 

Catalog Code: NTE40 
350 pp., Paperbound, 1996, ISBN 0-88385-097-4 
List: $34.95 MAA Member: $29.00 

ORDER FROM: 
THE MATHEMATICAL ASSOCIATION OF AMERICA 

P.O. Box 91112, Washington, DC 20090-1112 
1-800-331-1622 (301) 617-7800 FAX (301) 206-9789 

Membership Code: QTY. CATALOG CODE PRICE AMOUNT 

NTE4_ 

Name 
TOTAL 

Address 
Payment O Check O VISA O MasterCard 

City Credit Card No. Expires J 
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NATIONAL RESEARCH COUNCIL TEACHING/ 
RESEARCH POSTDOCTORAL AWARDS 
IN MATHEMATICAL SCIENCES AT THE 
UNITED STATES MILITARY ACADEMY 

The United States Military academy (USMA) and the Army Research Laboratories (ARL) invite 
applications for postdoctoral teaching and research associateship awards to be administered by 
the National Research Council (NRC). Applicants who are considered by USMA as qualified for 
teaching appointments in mathematical sciences will be invited to choose a research project and 
develop a proposal based on NRC approved research opportunities at ARL. Awards will be for 
3 years and include part-time research during the academic year and full-time research in the 
summers. The teaching requirement at West Point includes two sections per semester of under- 
graduate mathematics courses (calculus, differential equations, probability and statistics, linear 
algebra, etc.). The awards to begin July 1, 1997, include a beginning annual stipend of $40,000, 
reimbursement for initial relocation to West Point, an allowance for professional travel and 
subsidized health insurance. Applicants must be U.S. citizens and have earned a Ph.D. in math- 
ematical sciences within the 5 year period preceding July 1, 1997. Applicants should send a 
curriculum vitae, transcripts, a statement of teaching philosophy and career goals, and 3 letters 
of recommendation by November 1, 1996 to: 

Department of Mathematical Sciences 
ATTN: Personnel Officer 

United States Military Academy 
West Point, New York 10996-1786 

Visualization in Teaching and 
Learning Mathematics 
Walter Zimmermann and 
Steve Cunningham, Editors 

Buy this book. Ifyou can't buy it, have the library order progress in computer graphics has generated a 
it. Ifthe library won't orderit, ask to barrow a copyfrom renaissance of interest in visual representations 
a friend. But do read this book. and visual thinking in mathematics. 

-The M.athematics Teacher 230 pp., Paperbound, 1991 

High school community college,,.and univXersity teach- ISBN 0-88385-071-0 
ers who use or are interested in auisinggraphics to teach 
calculus, deductive rea.soning, functions,geometry, o List: $34.95 MAA Member: $29.00 
statistics will find valuable ideas for teaching... A Catalog Number NTE-19 
must for every college or university library uwith a 
mathematics department.-CHOICE 

The twenty papers in this book give an overview 
of research, analysis, practical experience, and ORDER FROM: 
informed opinion about the role of visualization 
. . . . ~~~~~~~~~The Mathematical Association of America 

in teaching and learning mathematics, espe- 1529 Eighteenth Street NW 
cially at.the undergraduate level. Visualization Washington, DC 20036 
in its broadest sense is as old as mathematics, but 1-(800) 331-1622 Fax (202) 265-2384 
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