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ARTICLES

The Baseball-Card Collector’s Query

JAMES T. SANDEFUR

Georgetown University
Washington, DC 20057-0996

1. The Average Size of a Baseball-Card Collection

The following relates my attempt to solve a problem that was asked of a colleague by a
baseball-card collector. In attempting to solve this problem, I used a number of
techniques from undergraduate mathematics, including series, the exponential func-
tion, Newton’s method, probability, statistics, simulation, and discrete dynamical
systems. I was also reminded about the importance of carefully stating the problem.

Suppose that there exist baseball cards for n different baseball players. Assume for
simplicity that each card is equally likely to be acquired each time a new card is
purchased. One copy of each different card in a collection is put into the “original”
pile. All duplicates, triplicates, etc. are put into the “duplicate” pile. The cost for
obtaining the first “original” card is just the cost of that card. Once the collector has
acquired a large number of “original” cards, the expected cost for obtaining one more
“original” card will be relatively large, since most cards acquired will be duplicates.

There are many questions that could be asked relating to the cost of a collection of
baseball cards. In this section, we will investigate one particular question, the
baseball-card collector’s question (BCQ):

What is the average number of cards, a,, in the “original” pile when the
two piles are equal for the first time?P

One reason for studying this question is that at this point, the collector has had to
purchase two cards for each original obtained. We could just as well have asked at
what point the “original” pile is half or a third of the size of the “duplicate” pile.
Another reason for looking at this question is that a baseball-card collector actually
asked a colleague this question.

It is clear that this question has an answer. When the collector acquires his or her
first card, it is clearly put into the “original” pile, so the “original” pile is larger than
the “duplicate” pile. But once 2n + 1 cards have been acquired, the “duplicate” pile
must be larger since the “original” pile can have at most n cards in it. At some point,
the two piles must be the same size.

Let p,(j) be the probability that the two stacks are equal for the first time with j
cards in each. Let’s do a few simple calculations. Suppose there are only n = 2 distinct
baseball cards. The first card collected goes into the “original” pile. There is a 50
percent chance the next card matches the first, so p,(1) = 0.5. Since there are only 2
distinct cards, the other half of the time the two piles will be of equal size for the first
time when there are two cards in each; that is, py(2) = 0.5. The average size of the
“original” pile when the two piles are equal for the first time is then a, = 1py(1) +

243
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Suppose n = 3. Simple calculations given that p4(1)=1/3, p,(2)=8/27, and
p4(3) = 10/27. Therefore, the average number of cards in the “original” stack when
the piles are equal for the first time is

ay=1py(1) +2p4(2) +3ps(3) = (1/3) + 2(8/27) + 3(10,/27) =55 /27 = 2.037.

For n =4, 5, and 6 the average number of cards in the “original” pile when they are
equal for the first time is a, = 2.611328, a5 = 3.219725, and a4 = 3.858451, respec-
tively. In general,

an = E]pn(j)
j=1

To compute ag, it is necessary to compute pg(1), ..., ps(6). To find, say pg(4), it is
necessary to find the probability of each of the ways that 4 originals can be obtained
before getting 4 duplicates, with 6 different cards being possible. There are 5 ways of
getting 4 originals and 4 duplicates:

oooodddd, ooododdd, oooddodd, oodooddd, and oodododd

where o represents an original and d a duplicate. (Remember that p,(4) implies that
the first time the number of originals equals the number of duplicates is when 4
originals have been obtained. So the probabilities of ooddoodd and other similar
combinations do not need to be computed.) To compute the probability of one of
thescz, say p(oooddodd), we count the ways of getting cards in this order, then divide
by 6°;

6-5-4-3-3:-3-4-4

68 '

Another approach to studying BCQ is to look at the ratio, r,, = @, /n, of the number
of cards in the “original” pile of the number of possible cards, n, when the two piles
are equal for the first time. In this case, the average ratio of the cards in the “original”
pile to n when the two piles are first equal is r, = 1.5/2 = 0.75, r3 = 2.037 /3 = 0.679,
ry = 0.652832, r5 = 0.643945, and ry = 0.643075. One reason for looking at the ratio
is that the answers to BCQ for different n-values can be compared.

p(oooddodd) =

2. The Expected Number of Originals in a Collection of Size k

In trying to solve BCQ, I made the mistake of trying to solve the general problem
before working the special cases just discussed. My approach was to define ¢,(k) as
the expected number of cards in the “original” pile when k cards have been acquired,
and there are n distinct cards. Clearly, ¢,(0) =0 and ¢,(1) = 1. Suppose that e,(k)
has been computed. Then e,(k + 1) is ¢,(k) plus the probability that the k + 1th card
is different from the previous k cards. Since e,(k) is the expected number of different
cards currently in the collection, the probability the next card will be different from
the first k cards is (n — e,(k))/n, that is, the number of cards different from the ones
owned divided by the number of different cards. This gives the first-order affine
dynamical system

e(k+1)=e, (k) +(n—e,(k))/n=(0-1/n)e,(k)+1.

Since we know that ¢,(1) =1, this dynamical system gives that ¢,(2) =(1—1/n) +
Le,(3)=(1~-1/n)*+(1—1/n)+1, and so forth. In general, ¢,(k) is given by the
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finite geometric series
en(k)=(1 =1/ T+ (1=1/m) "2+ +(1-1/n) +1.
This finite geometric series can be rewritten as
en(k) = —n(1—=1/n)* +n.

Let f,(k) equal the expected number of cards in the “duplicate” stack when k
cards have been obtained. Clearly, f,(k)=k—e,(k)=k—n+n(l—1/n)*, The
stacks are the same size when e, (k) =f, (k).

When n = 2, the formula for ¢,(k) gives that e,(1) =1 and f,(1)=0; ¢,(2) =15
and £,(2) = 0.5; €,(3) = 1.75 and £,(3) = 1.25; and ¢,(4) = 1.875 and f,(4) = 2.125.
My second mistake was to assume the two piles would be the same size for a
collection containing k =k, cards where k, satisfies the equation

e, (k) =f,(k) or —2n(1—-1/n)*+2n—k=0
after simplification. For n =2, the “original” and “duplicate” stacks are never
expected to be the same size, but once 4 cards have been obtained, the “duplicate”
stack is expected to be bigger than the “original” stack. Thus the solution for e, (k)
can be used to find the minimum collection size for which the “original” stack is
expected to be at most the size of the “duplicate” stack; that is, the smallest integer k
for which
—2n(1—1/n)* +2n -k <0.

The approximate solution, k,, can be found using Newton’s method. The actual
solution is then [k,], the smallest integer greater than or equal to k,. If, say,
n = 1000, then

—2000(1 — 1,/1000)* + 2000 — k = 0
gives kg = 1594.17, and therefore, [k,]= 1595.

Although I was attempting to solve BCQ, [k,] is actually the answer to an
alternative question (AQ):

How many cards must I collect before the “original” pile is expected to be
smaller than the “duplicate” pile?

To help distinguish between BCQ and AQ, define p,(i, j) as the probability that
the “original” pile has i cards and the “duplicate” pile has j cards when k=i +
cards have been obtained. This gives the collection of probabilities

Pa(0.0)  p,(0.1) p,(0,2) p,(0,3)
Pu(1,0)  pu(1,1)  pu(L.2)  pa(1,3)
Pa(2.0) pu(2.1) pu(2.2) pu(2.3)
Pa(3.0) pa(3.1)  pu(3.2) p.(3,3)

Clearly, p,(0,) =0 for all j, and p,(i,) =0 if i >n.

Consider the sum
n
N ACH)!
j=0

which gives the expected number of cards in the first pile when the two piles are
equal. This resembles the solution to BCQ, but p,(j, j) = p,(j) because the two piles
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may be equal at j cards each while also having been equal with fewer cards each. On
the other hand,

k
e.(k) = jgjpn(j,k -7,

uses the probabilities along “reflected” diagonals, from upper right to lower left.
Solving AQ means finding the first such diagonal that gives e,(k) < k /2. Differences
between BCQ and AQ are reflected in the different probabilities used in answering
each question.

The interested reader is encouraged to show that the dynamical system

e,(k+1)=(1-1/n)e, (k) +1
is satisfied by e,(k) = Ef_ jp,(j, k — 7). This can be done using the relations
(n=i+ Dp, (= 1)) +ipalini=1)

p.(i,j) = - i>1landj>0,
_ W(1,5—1 n—i+1)p,(i—-1,0) &
pa(tf) = BIZD g - (2 ZitDRGZLO) 5y
j=1

3. The Fraction of the Cards in Each Pile

For BCQ, we studied r, = a,/n, the fraction of the n distinct cards in the “original”
pile when the two piles were, on average, equal for the first time. For AQ, the two
piles are expected to be the same size when the collection contains k, cards. In this
case, there are k, /2 cards in each pile. As we did for BCQ, let’s study the fraction of
the n distinct cards expected to be in the “original” pile when there are k, cards in
the collection. Denote this fraction by x, =k, /2n, where k, is the solution to

—2n(1-1/n)" +2n—k=0.
It follows that x, solves the equation
1-(1-1/n)"" —x=0.

As n tends to infinity, (1 — 1/n)" tends to e™!, so as the number of possible cards
increases, the ratio x, =k, /2n approaches the solution to the equation

l—e 2 —x=0.

The approximate solution X =0.79681213 to eight decimal places, can be found
using Newton’s method, a graphing calculator, or a computer algebra system.

This implies that for large n, x,=k,/2n=X, or k,=2nX. This means, in
context, that the two piles are expected to have the same number of cards when the
collection contains about 1.6n cards. At this point, moreover, the collection will
contain about 80 percent of the possible cards.

To see how fast x, converges to 0.796812 as n increases, I used Newton’s method
to find roots of 1 — (1 — 1/n)*"* —x = 0 for several values of n. In particular, I found
the following pairs (n, x,,):

(2,0.9225) (3,0.8834) (4,0.8627)
(10,0.8237) (50,0.8023) (100,0.7995)
(1000,0.7971) (10000, 0.796 84) (100000,0.796 815)

(1000000, 0.796 812 40)
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4. Comparing the Answers to the Two Questions

How does the answer to AQ relate to the answer to BCQP? Some relatively simple
calculations reveal that BCQ and AQ have quite different answers, at least when n is
relatively small. For BCQ, the average of the ratio of the “original” stack to n when
the two stacks are equal for the first time was seen to be r, =a,/n =0.75, when
n = 2. This contrasts with x, = k,/2(2) = 0.9225. More comparisons are:

n= 2 3 4 5 6
r, = 0.75 0.679 0.652 832 0.643945 0.643 075
X, = 0.9225 0.8834 0.8627 0.84991 0.841277

The second list of ratios was computed using the solution x,=k,/2n and not
[k,1/2n. It should be clear that as n goes to infinity, k,/2n and [k,]/2n converge
to the same limit.

5. Computer Simulations of Card Collecting

To learn more about BCQ I developed a computer program to simulate the random
acquisition of cards. To check my program, I used n=>5 different cards, and
simulated the collection of cards until both piles were the same for the first time. I
repeated the simulation a total of 1000 times and obtained r§ = 0.641 as the average
ratio of cards in the “original” pile on n=5. This agreed with my previously
computed answer of r;=0.644. I then simulated the problem 1000 times using
n = 10. This gave a ratio of r}; =0.6777. I then made 100 runs each for n = 100,
1000, 10000, and 100000, getting sample means of rjy = 0.7808, rigy =
0.7973, rygg00 = 0.797 505, 199 990 = 0.796 623. Three runs using n = 1000000 gave a
sample mean of 7}y g90 = 0.796 69.

The results of these simulations lead me to believe that the answers to BCQ and
AQ are related in that both r, and x, tend to X = 0.796 812, the root of 1 —e™2* —x
=0, as n tends to infinity.

For simulations in which the number of possible originals, n, is relatively small, the
following TI-calculator program works well. For large n or a large number of
simulations, some computer system should be used. I used a Basic program, which I
will be glad to send to interested readers.

:Disp “NUMBER DIFF CARDS”:Input N :0 > K :0—-L :Lbl 1
‘K/N->P rand > A :If AP :1+K—->K :If A<P :1+L-L :If
K> L :Goto 1: Disp K

6. Are the Answers to the Questions the Same in the Limit?

A heuristic argument that r,, = X goes as follows. Let n be large. The probability that
the two piles are the same at 1 each is p,(1) = 1/n. For the first few cards added to
the collection, the “original” pile is growing faster than the “duplicate” pile, since we
are more likely to get an “original” than a “duplicate.” In fact p,(2) =4/n%—4/n3
and p,(3) is on the order of 1/n3. But when the “original” pile has more than n/2
cards in it, the “duplicates” start accumulating faster than the “originals.” When the
collection has k, = 2nX cards in it, the two stacks are expected to be the same size,
e (k) =f,(k) =k, /2 = 0.8n. Thus, for collection sizes k close to k,, the “duplicate”
pile is growing much faster than the original. In fact, at this point the “original” pile
has about 80 percent of the possible cards, so there is a 20 percent chance of a new
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card and an 80 percent chance of a duplicate. Thus, de,(k)/dk = 0.2 and df,(k)/dk
= 0.8 at k =k,. (The reader should compute these derivatives to check this claim.)
Thus, p,(a) will be its largest for a-values close to k,/2 and these probabilities
should be significantly larger than all of the other probabilities. This should result in
an average size a,, for the “original” pile that is close to k,/2 and r, should then be
close to X.

This argument helps explain why the answers to the problems are apparently the
same for large n. It is not meant to be a proof that the two limits are identical. It also
leaves me wondering whether the stronger result,

la, —k,| =0

is true.

This argument led me to thinking about rates of change and derivatives. We might
ask for instance: For what value of k does the number of “originals” most exceed the
number of “duplicates”; that is, for what k is

e, (k) —f.(k) = —2n(1—1/n)* +2n —k
largest. The calculus solution is to take the derivative of the function e,(k) —f,(k)
with respect to k, set the derivative equal to zero and solve. This solution is
_In2+Inn+In(lnn—In(n-1))
B Inn—In(n-1) ’
which should be rounded to the nearest integer.
Another solution is the value of k for which
e (k)= -n(1-1/n)+n=ns2

since beyond this point we are more likely to get a “duplicate” card. The solution to
this is

kl

_ In2
" In-In(n-1)"
It is interesting that the difference in these solutions,
Inn+In(lnn —In(n-1))
Inn—In(n-1)
is slightly less than one-half for all values of n greater than 2, so that the two answers
are essentially the same.

n

k' —k" =

7. Conclusion

After all of this work, an exact answer to BCQ for arbitrary n still eludes me, although
I believe this answer can be derived by properly using the sum

n
2 jpa(3 )
j=0
and the relationship

n—i+1)p,(i—1,7)+ip,(i,j—1
pn(i,].)=( ) Pa( n]) palinj—1)
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Introduction

Parabolic mirrors and elliptic domes (“whispering galleries”) are familiar examples of
focally reflective surfaces. In this paper we show that only conic curves and their
corresponding surfaces of revolution (and in degenerate cases, lines and planes) are
focally reflective. In [1], curves and surfaces with reflection properties were classified
by solving differential equations in polar and spherical coordinates. Here we use a
coordinate-free method to achieve the same classification by relating reflection
properties to the defining focal properties of conics. The well-known orthogonality
property of confocal conics comes as a bonus.

Finite Points and Points at Infinity

We identify each point P in R" (for us, n =2 or n = 3) with the vector OP from the
origin to P. This enables us to write Q — P instead of PQ whenever we wish. Points of
R" will sometimes be called finite. By contrast, a point at infinity is a line through
the origin, viewed as a new “point” not in R". (The term “point at infinity” comes
from imagining a point that is approached by moving infinitely far away from the
origin in either direction along the line.) The point at infinity specified by a line [ will
be denoted I*. The set consisting of R", together with its points at infinity, is denoted
P" and called projective n-space." If P € R", we define the line joining P to I* to be
the line [, through P parallel to I. We say that I* “lies on” I,.

Curves with Reflection Properties

Let a: I > R? be a smooth regular parametrized curve in R? defined on an open
interval I, and let F,, F, be points in P\ a(I). (“Regular” means that a'(¢) # 0 for
all t € 1) Following [1], we say that a has a reflection property with foci F, and F,
if, for each point P € a(I), the following conditions hold:

® ﬂ vector normal to the curve a at P lies in the span of the vectors Fl—l'; and

F, P.

"Projective geometry is not used in this article. We refer interested readers to [6] or [5] for a gentle,
non-axiomatic introduction to the subject. For a projective geometry interpretation of the focal properties of
conics, see [7].
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(i) The line normal to & at P bisects one of the pairs of opposite angles formed by
the intersection of the lines joining F, and F, to P.

If F, is a point at infinity, we take F,Pto be any nonzero vector parallel to the line
joining P to F,, and similarly for F,. Condition (i) is vacuous unless F;, F,, and P lie
on the same line; in this case, (i) says that @ is orthogonal to that line at P. (This
occurs, for example, when F, = F, but not when a is part of the line through a pair
of distinct foci.)

Now let @ be as above, and let F, and F, be distinct points in P2\ a(I). At each
point P = a(t) along a, we set r;(t) = F P and u,(t) = r (t) /I (I, k = 1,2. The
vector-valued functions r; and u; describe, respectively, the position vectors from F;
to points along @ and the corresponding unit vectors.

We say that a is a positive (resp. negative) reflector with foci F,, F, if, for all
t €1, (i) holds and u,(¢) + u,(¢) (resp. u,(t) — uy(#)) is normal to a. Figures 1 and 2
illustrate these reflection properties for finite foci. It follows from (ii) and the
smoothness of our curves that every curve having a reflection property with distinct
foci F), F, must be a positive or negative reflector with foci F), F,. Conversely, every
positive or negative reflector with distinct foci F; and F, has a reflection property
with the same foci. (Condition (i) is used here to handle cases in which u, = +u,.)
Thus a curve « that satisfies (i) will also satisfy (ii) < either [u,(¢) + u,(t)]-a’(t) =0
forall t €1 or [u(t) —uy()l-a’'(t)=0forall t 1.

u,(t) +uy(t)

FIGURE 1
A paitive reflector e with distinct finite foci F,, F,.

A well-known orthogonality property of conics now follows easily:

A positive and a negative reflector having the same (distinct) foci are
orthogonal at all points of intersection.

To see why, let o, and a_ be two such reflectors and let P be any point of
intersection. Then the unit position vectors U; and U, at P are the same for both
curves. Now U, + U, is orthogonal to a, at P, U, — U, is orthogonal to a_ at P,
and U, + U, is orthogonal to U, — U, since (U, + U,)- (U, = U,) = [0, [I* - G, |1 =
1—-1=0. Thus @, and a_ are orthogonal at P, as claimed.
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Fy =) — uglt)

V"

FIGURE 2
A negative reflector o with distinct finite foci Fy, F,.

We now proceed, through several cases, to classify all curves with reflection
properties.

Case 1: F; and F, are distinct and finite. Condition (ii) holds if and only if
[u,(8) £ uy(t)]-a’(t) =0 for all t&I; the sign is positive or negative according to
whether a is a positive or negative reflector. Since r,(t) = F, P= a(t) — F,, we see
that ri(t) = a’(t), and

IO = [ =@ - \;:k((?)'fff(tt)) = (O @),
()

Therefore,
(ii) holds « [|lr (t) || £[lro(¢) || =0 forall te1
< |lr () ]| £]ra(t) | =c forall t €1, ¢ a constant
«d(P,F)) +d(P,F,)=cforall P€ a(I), (2

where d(P, F;) denotes the distance from P to F,. -
With a “+” sign, (2) describes an ellipse if ¢ > d(F,, F,), the line segment F, F, if
¢ =d(F,, F,), and the empty set otherwise. With a “—" sign, equation (2) describes
one branch_of a hyperbola if 0 <|c| <d(F,, F,), a straight line (the perpendicular
bisector of F\ F,) if ¢ =0, and a ray from one focus in the direction opposite the other
focus if |¢c| = d(F,, F,). Notice that condition (i) rules out both F, F, and the ray, since
all their points are collinear with F, and F,. Condition (i) does not, however, rule out
the perpendicular bisector. We conclude, therefore, that if a is a positive reflector,
then it is part of an ellipse; if @ is a negative reflector, it is part of a hyperbola or a
straight line. By the italicized remark above, an ellipse is orthogonal to any hyperbola

with the same foci, as well as to the perpendicular bisector of the line segment joining
the foci.
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Case 2: F, is finite and F, is a point at infinity. Let F, =[* and let u be a unit
vector parallel to I. Then uy(¢) = u for all ¢, and, using (1),
(i) holds « [uy(¢) £ u]-a’(t) =0 foralltel
o [[ley ()| £ri(¢)-u] =0 foralltel
o |r(t)| £r(t) - u=c forallt€1, c aconstant
< d(P,F))+¢&(P—F)u=c foral PEa(Il)and 6= +1. (3)
Suppose that &= +1 in (3). Since [(P—F))-ul<|[P—F,l=d(P, F,), (3) has
solutions P only when ¢ > 0. If ¢ =0, then solutions P must satisfy (P — F,)-u=
—d(P, F)) <0, so they must lie on the open ray from F, in the direction of —u.
Condition (i) rules out this possibility, so we must have ¢ > 0. Then solutions P satisfy
d(P,F))=((F, +cu)—P)-u. (4,)
Let I, be the line through the point F, + cu orthogonal to u. Since F, & a(I), the
right-hand side of (4, ) must be positive, which means that solutions P must lie on the
side of I, in the direction of —u. (See Figure 3a.) Thus (4,) says that d(P, F)) =

d(P,1,). This condition describes a parabola with focus F, and directrix I,; the
vertex is at F) + jcu and the parabola opens in the direction of —u.

+ Fl +cu Fl -=cu . Fl uH
L, I
FIGURE 3a. FIGURE 3b.
The analysis is similar when €= —1; ¢ > 0 and the solutions satisfy
d(P,F1)=(P_(F1_Cu))'u~ (4_)

This condition describes the parabola with focus F, and directrix I_, the line through
F| — cu orthogonal to u. The vertex is at F, — gcu and the parabola opens in the
direction of u. (See Figure 3b.)

As ¢ ranges through positive values, we obtain two families of parabolas, one for
each of £= 1. All these parabolas share the same foci, so any two parabolas, one
from each family, intersect orthogonally. Note, however, that u was only required to
be parallel to I; its direction was arbitrary. Choosing —u instead of u interchanges the
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two families of parabolas. Thus, in this case, positive and negative reflectors are not
qualitatively different.

Case 3: F, and F, are distinct points at infinity. Write F; =1} and F, =1} and let
u; and u, be unit vectors parallel to I, and I, respectively. Here, condition (i) is
vacuous. As in earlier cases, a’(t):(u; + guy) =0 for all t, where £= +1. Thus
a(t) (u, + auz) =c¢ for some constant c. Equivalently, {a(t)—c(u,+ cu,)/
lha, + eu,yl®}-(u, + £u,) =0 for all ¢. It follows that a is part of the straight line
that is orthogonal to u, + euy (i.e., parallel to u; — gu,) and passes through the
point c(u, + gu,)/lu, + eu,ll®. As ¢ ranges through real values, we obtain two
families of straight lines: for =1, a family of positive reflectors, orthogonal to
u, +uy; and for 6= —1, a family of negative reflectors, orthogonal to u; —u,. As
usual, the two families intersect orthogonally.

Case 4: F, and F, are finite and equal. When F, =F,, condition (i) says that at
each point P= a(t), a is normal to the line through P and F;; ie,
a'(t) (a(t)—F)=0forall t €l But

a'(t)(a(t) —F)=0forall t & [(a(t) = F))-(a(t) = F,)] = 0 forall ¢
o|la(t) - F |’ =c forall ¢,

for a constant ¢. Since a(I) contains more than one point, ¢ must be positive; thus a
is part of the circle of radius Vc centered at F,.

Case 5: F, and F, are the same point at infinity. Let F, = F, =1*, and let u be a
unit vector parallel to I. Then by (i), a’(t)-u=0forall t €I, so a(t)-u=c forall ¢,
where ¢ is a constant. Equivalently, (a(¢) — cu)-u=0 for all t; i.e., a is part of the
straight line through the point cu, orthogonal to u.

We have shown that a curve a with a reflection property must be part of an ellipse,
hyperbola, parabola, circle, or straight line. Working backwards through the argu-
ments shows that, conversely, each of these curves has a reflection property. We
summarize our results in a theorem.

THEOREM. A smooth connected plane curve has a reflection property if and only if
it is part of an ellipse, hyperbola, parabola, circle, or straight line.

A fixed pair of foci determines a family of curves with reflection properties. Positive
and negative reflectors with the same distinct foci are orthogonal. The following table
summarizes the classification:

Distinct foci Both finite One finite, one infinite Both infinite
Positive reflectors: confocal ellipses confocal parabolas parallel lines
Negative reflectors: confocal hyperbolas confocal parabolas parallel lines

and the
perpendicular bisector
of the line segment

joining the foci

Equal foci Finite Infinite

concentric circles parallel lines
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Figure 4 depicts a pair of distinct finite foci and the orthogonal families they
determine; Figure 5 shows families of parabolas that arise from distinct foci when only
one focus is finite.

FIGURE 4 FIGURE 5
Confocal ellipses and hyperbolas Confocal parabolas

Note. The heart of the classification is the observation that condition (ii) is equivalent
to relation (2) in Case 1 and to relations (4,) and (4_) in Case 2. That part of the
argument is essentially a bidirectional version of the calculations in [4], which used
differentials. The classification argument is simpler than that in [1] because it uses the
reflection property to obtain the defining focal properties of the conic sections, rather
than to obtain their equations in a particular coordinate system.

Surfaces with Reflection Properties

The notion of a reflection property for curves extends in a natural way to surfaces in
R3 (indeed, to hypersurfaces in R”, n > 3, though we leave that as an exercise for the
interested reader).

A smooth connected surface . in R? is said to have a reflection property if there
are points F,, F, (called foci) in P?\.& such that, for each point P in %,

(i) any vector normal to % at P lies in the span of the vectors ﬁ and FTﬁ; and
(ii) the normal line to & at P bisects one of the pairs of opposite angles formed by
the intersection of the lines joining P to F, and F,.
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If F is a focus at infinity, then we take FPto be any nonzero vector parallel to the line
joining P to F.If F,, F,, and P lie on a line, then by (i), that line is normal to .% at
P, and (ii) adds no more information. Otherwise (i) follows from (ii).

Since (i) and (ii) are local conditions, we lose no generality by assuming that & is a
parametrized surface; i.e., that = (%), where o: % = R? is a smooth regular map
from an open subset # of R? onto & in R® “Regular” means that at each point
P = o (u,, v,) of the surface, the tangent vectors d,0(ug, vy) = (do/du)uy, v,) and
3,0 (ug, vy) = (d0/dvXugy,vy) are linearly independent and thus span the tangent
plane to & at P.

For brevity, we denote typical points of % and & by p and P = a(p). As before,
we set r(p) =F, P and u,(p) = r (p)/Iry(p)ll for k=1,2, using them to define
positive and negative reflectors. If F, and F, are distinct, then a surface . has a
reflection property with foci F; and F, if and only if it is a positive or negative
reflector with those foci.

Suppose % has a reflection property with distinct foci. When both foci are finite,
the analogue of (1) is the pair of relations

dlei(p) | =ui(p)-d,0(p), dlr(p)|=u(p)-d,0(p). (5

Since . is a positive or negative reflector, these relations imply that

a,[lei (P £le2(p)I] = [wi(p) £us(p)]-6,0(p) =0

and

av["rl( P)” i"rz(P)"] = [“1( p) £ uy( P)] "d,0(p)=0.

(Choose the appropriate sign.) Hence |Ir;( p)ll £ liro( p)ll is constant as a function of p;
this means that every plane cross-section of % passing through the foci is the same
curve having a reflection property with foci F), F,. Thus .% is part of an ellipsoid of
revolution for a positive reflector; for a negative reflector, % is part of a hyperboloid
of revolution or part of the plane that is the perpendicular bisector of the line segment
joining the foci. Similar reasoning shows that with one finite focus and one focus at
infinity, % is part of a paraboloid of revolution. With both foci at infinity, & is part of
a plane.

When % has a reflection property with equal finite foci, (i) says that r,(p) is
normal to . for each p € #. This says that d,r,(p)-r(p)=d,r|(p)-r(p)=0 for
all p, so 3,(lr (PI*) = 3,(lle (PI*) =0 for all p. It follows that |ir,(p)ll is constant
as a function of p, so & is part of a sphere centered at F,.

Finally, if & has a reflection property with equal foci [* at infinity, we let u be a
unit vector parallel to ! and, proceeding as in Case 5, find that & is part of a plane
orthogonal to u. To summarize:

THEOREM. A smooth connected surface has a reflection property if and only if it is
part of an ellipsoid of revolution, a hyperboloid of revolution, a paraboloid of
revolution, a sphere, or a plane.

A fixed pair of foci determines a family of surfaces with reflection properties.
Positive and negative reflectors with the same distinct foci are orthogonal. The
following table summarizes the classification.
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Distinct foci Both finite One finite, one infinite Both infinite
Positive reflectors: confocal ellipsoids confocal paraboloids parallel planes
Negative reflectors: { confocal hyperboloids confocal paraboloids parallel planes

and the plane
perpendicular bisector
of the line segment
joining the foci
Equal foci Finite Infinite
concentric spheres parallel planes

The general result for hypersurfaces in R* can be found in [2] (see also [3]) or [8],
but with different proofs.

Acknowledgement. The authors independently submitted different versions of this classification proof at
about the same time. We wish to acknowledge that Harley Flanders sent yet another version of this proof to
the first author only about a month later. When three mathematicians have the same idea at about the same
time, it is not just a coincidence. Perhaps it means that this is the “right” way to do the classification.
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A Parenthetical Note (to a Paper of Guy)

MARK KRUSEMEYER
Carleton College
Northfield, MN 55057

Guess my number 1,2,5,14,.... What is the next number in this sequence? Of
course such questions have no logical validity, even if they do persist on tests
purporting to measure mathematical skill or aptitude. But in defense of such questions
it can be argued that they often seize the eye and the imagination—and that when the
terms of the sequence are generated by some specific procedure, the pattern-finding
needed to predict future terms can be an important mathematical activity.

Back to 1,2,5,14, ... . To an alert middle school student, the next number is surely
41, since each term shown can be found from the previous one by multiplying by 3,
then subtracting 1. Extending the sequence in this way gives us M1458 in Sloane and
Plouffe’s Encyclopedia [5]: the n-th term is 3(3"~! + 1).

Sloane and Plouffe list thirteen other sequences that start either with the same four
terms, or with an extra 1 at the beginning for lagniappe. One example is the
stamp-folding sequence M1455: 1,1,2,5,14,38,... . The n-th term of this sequence
gives the number of ways to take a strip of n ungummed, blank stamps (so you can’t
tell left from right, top from bottom, or front from back) and fold it so that all n
stamps end up on top of each other. Although the sixth term was cited as 39 in [1] on
the authority of Table 4 of [2], the rest of that table and Koehler’s Theorem 3.4 show
that 39 was a misprint.

A professional guess To professional mathematicians, the best-known sequence
starting 1,2,5,14,... is M1459 in [5], which consists of the Catalan numbers

. = 1 (Zn)
" on+1\n )
This sequence and several of its “start-alikes” figure prominently in Richard Guy’s
delightful article on the Second Strong Law (or, if you prefer, second delightful article
on the Strong Law) of Small Numbers [1]. In particular, Guy mentions two ways of
associating the Catalan numbers with parenthesization. The purpose of this note is to
point out a direct connection between those two ways.

The first “manifestation” of ¢, is as the number of possible interpretations of a
non-associative product of n + 1 letters. Computing such a product involves carrying
out n multiplications, so in principle n pairs of parentheses are needed, but in
practice the outer pair is left off and only n — 1 pairs are displayed. For example, the
product abcde can be interpreted as (abXc(de)), as (((ab)c)d)e, or in any of twelve
other ways, so ¢, =14. When Catalan numbers are mentioned in textbooks on
combinatorics, it is often in this context; see, e.g., [3], Section 5.4.2. We will call a
parenthesization of a product of n + 1 letters a bracketing and denote the set of all

such bracketings by B,. To try to avoid confusion with the other type of parenthesiza-
tion (which is about to be discussed), we will use “floor” symbols rather than

257
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parentheses when writing bracketings. For instance, we will write

By ={lalbclld, lablcld, lab]lcd), alblcd]], allbcld]}

for the set of bracketings whose elements are counted by ¢; = 5. Note that the actual
choice of letters is immaterial; | rlat||s should be considered the same bracketing as
lalbcelld.

The other “manifestation” of ¢, is not as common in the literature. It can be found
in [6], and it appears to have originated with Conway and Guy. They observed that ¢,
is the number of ways to arrange n pairs of empty parentheses, subject only to the
restriction that no closing parenthesis can precede the corresponding opening one.
For example, ( ) ) (is an ineligible way to arrange two pairs of parentheses, because
the second closing parenthesis comes too early. We will call an arrangement of pairs
of parentheses in which no closing parenthesis precedes the corresponding opening
one a CG-arrangement; the set of all such arrangements of n pairs will be denoted by
CG,. When writing CG-arrangements, we will use “ceiling” symbols rather than
parentheses. For instance,

CGy =AML ITNIL LTy,

(For a recent proof starting from all (Zn") ways to arrange n pairs of parentheses that
CG, has exactly ¢, elements, see [4].)

Now for the connection It is not immediately clear that there is any connection
between bracketings and CG-arrangements. If we simply omit the letters from a
bracketing, we lose far too much information; for instance, the five bracketings in B,
yield [ ]] (four times) and | | | | (once). If we consider symmetry, we see that of the
bracketings in B, only [ab] lcd] is its own reflection, whereas of the arrangements in
CG,, [TTNL TTT111, and [1[111 are all symmetrical. Thus Guy suggested in [1] that
one was “unlikely. .. [to] find a direct combinatorial comparison.”

However, we will see that there is a natural, recursive way to define a 1-1
correspondence between CG-arrangements and bracketings. We will also see that this
correspondence does, indeed, “break symmetry.”

The following idea is at the heart of the recursive definition. (After the first draft of
this note was written, I found the same basic idea in the discussion on p. 43 of [7],
another source for the second manifestation of ¢,.) Given a CG-arrangement «a, we
define the break point of a to be the first point after the beginning of a, reading
from left to right, where every pair of parentheses that has been opened has been
closed again. For example, in each case shown below, the break point occurs at the
arrow:

NI
rrm,n

Note that the break point may be at the very end of a. Since the break point is
never at the beginning of a and since the parentheses to either side of the break
point are balanced, there are CG-arrangements B and y such that a is of the form
[ By, with the break point immediately before y. For instance, in the cases shown


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 4, OCTOBER 1996 259

above we have
B=a, y=I[I11 and
B=I[111, y=T1I1, respectively.

(There is one exception: If a= O, the break point is undefined, and of course a is
then not of the form [ B1y.)

Note that even without specifying the break point, 8 and y are uniquely deter-
mined by a=[ By, for if B were to extend through the break point, at that point a
parenthesis in 8 would be closed prematurely.

Roughly speaking, the recursive way to map CG-arrangements to bracketings is to
split each CG-arrangement at the break point, then to map each of the separate
arrangements B and 7y such that a=[ By to a bracketing, and finally to “reassem-
ble” those bracketings. We will now make this precise by defining 1-1 correspon-
dences F,: CG, = B, for all n>0.

For n =0, there is no problem: To the unique (empty) arrangement of no pair of
parentheses, we associate the unique (invisible) bracketing of a single letter. For n >0
and a € CG,, we have seen above that there is a unique way to write a =[ By with
BECG;, YyECG,_;_,, 0 <k <n. In defining F,(a), we may assume by recursive
hypothesis that F,( 8) and F,_,_,(y) are already defined. This allows us to form the
bracketing

E(a) =|E(B)]|F-g-1(7)]
of (k+1)+(n—k)=n+1letters. (If k=0 or k =n — 1, the “extra” floor symbols
around F,(B) or F,_;_,(y), respectively, should be omitted.)

As an example, let’s find Fy(a), where a is the CG-arrangement [[1[1] T””' The

break point is indicated by the arrow, and we have a=[ Bly with g=[1[1, y=[[11.
These arrangements, in turn, break up as B=[B,18, with B, =, B, =[] and
y=I[vly, with y, =[], y,=0. Finally, B, =7y, =[] breaks up as [§]e with
8 = ¢ =J. Therefore, we have

F\(By) = F\(y,) = F)(8)Fy(&) = ab;
F,(B) = Fo( BLF\( By)l = al be]
(remember that the actual letters are immaterial to the bracketing!);
Fy(y) = F(y)IFy(v,) = lab]c;
Fy(a) = Fy( B)LFy(y)] =lalbec|]lldelf].

So to the CG-arrangement a = [[1[1][[ 1] corresponds the bracketing lal bc]] L1 de]f ).
Note that this is a symmetrical bracketing, even though there is no apparent symmetry
to a.

We can use induction on n to show that the F, are 1-1 correspondences; here is an
outline of the proof. The basis step, for n =0, is clear, so we can assume that F, is a
1-1 correspondence for each n <N. Now note that any bracketing ) € By can be
written uniquely in one (and only one) of the following three forms: al®), with
®eBy_;; |@la, with ®eBy_; |P]|¥] with ®eB,, ¥ €By_,_, for some
k<N. In the first case, since Fy_, is a 1-1 correspondence, there is a unique
¢ECGy_; with Fy_,(¢)=®; we then have Fy(l¢)=al®]. Similarly, in the
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second case we have Fy([ ¢]) =|®|a, where once again Fy_,(¢) = ®. Finally, in the
third case there are unique ¢ € CGy, ¢ € CGy_;_, with F(¢)=®, Fy_,_,(¢) =T,
and we then have Fy([¢l¢) = ®]['¥]. So Fy is onto, and from the uniqueness of ¢,
¢ in the various cases above we soon see that Fy is one-to-one as well.

The following table shows the correspondence F,. That is, in each row the
bracketing is the image under F, of the CG-arrangement.

CG-arrangement Bracketing CG-arrangement Bracketing
[ LLlablcld]e [ Lalbe]llde)
(I LLablc]lde] A allbled] el
[ alllbeldle] [rrn Labllcldel]
(rrrm [lalbelldle rrrmn allbc]lde]]
(e LLab]ledlle (e alblledlel]
(e lallbeld]le (mm lalbled]|le
[T labllledlel [ al bleldell)
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Math Bite:
Recitation of Large Primes

What is the largest prime for which you can recite all digits? Is it the Mersenne prime
8191, or the last prime-numbered year of the twentieth century (1999), or the Fermat
prime 65537? The largest known repunit prime, which is the fifth of its kind,
represents a case for easy memorization. With virtually no effort, all 1031 of its digits
(each of which is 1) can be recited.

—Ricuarp L. Francis
SoutHEAST Missouri STaTE UNIVERSITY
Care GirarpEAU, MO 63701
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On Systems of Linear
Diophantine Equations

FELIX LAZEBNIK

University of Delaware
Newark, DE 19716

Introduction Something happened to me recently I would wager has happened to
many who read this note. Teaching a new topic, you cannot understand one of the
proofs. Your first attempt to fill the gap fails. You look through your books for an
answer. Next, you ask colleagues, go to the library, maybe even use the interlibrary
loan. All in vain. Then it strikes you that, in fact, you cannot answer an even more
basic and seemingly more interesting question. You peruse the books again. They
seem to have answers to thousands of strange questions, but not to yours (the most
natural one!). At the same time you cannot believe that your question could have been
overlooked by generations of mathematicians. Days pass; the agony continues.

Then one day, some way or other, you find the answer. In my case the answer was
in a book I already owned. It followed from a theorem I had known for a long time,
but I had never thought of this particular application. I must admit, indeed, that this
theorem appeared in almost every book I had checked, but never with a pointer to
this particular application, even as an exercise. Were the authors unaware of the
application? Or did it seem too obvious to mention? In any case, here is the story.

In my graduate combinatorics course, a proof of the existence of a design was based
on the following question: Given a system of linear equations Ax=b, where
A=(a; ;) is an m Xn matrix with integer entries, and b is an m X 1 column vector
with integer components, does the system have an integer solution, ie. an n X 1.
solution vector x with integer components? The suggested method ([7], Th. 15.6.5)
makes use of “a well-known theorem of van der Waerden”:

THEOREM (van der Waerden). An integer solution of the system exists if and only
if, for every row vector v with rational components such that vA has integer
components, vb is an integer.

I had never seen this theorem, and I was surprised that such a criterion could be
useful (which it was!). In trying to prove the theorem, I realized that I did not know

any good method for resolving a more basic question:

How can one tell whether a system of linear diophantine equations has a
solution? If solutions exist, how can one find any or all of them? (x)

I could not find this question in any of at least 30 modern texts on abstract algebra
or number theory. The place I found it at last was the classical text of van der
Waerden [14, Exercise 12.3]. Not for the first time this book contained an answer that
I could not find in more recent sources—why hadn’t I started with it? (Interestingly,
the book contains very few exercises, but this one was there.)

The theory behind the solution is closely related to the famous structure theorem
for finitely generated abelian groups, or, more generally, for finitely generated
modules over principal ideal domains. Various proofs can be found in many books on
abstract algebra, e.g., see [8]. We present a matrix version of the theorem. Let Z
denote the ring of integers, M,, ,(Z), 1<m <n, the ring of all integer m Xn
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matrices, SL,(Z) the set of all square k Xk matrices with integer entries and
determinant 1 or — 1 (unimodular matrices). By D = diag(d,, d,,...,d,) € M,, (Z)
we denote the diagonal matrix that has an integer d, in the (i,i) entry, i=1,...,m,
and zeros elsewhere. Then we have:

THEOREM 1. Let A € M,, ,(Z). There exist L € SL,(Z) and R € SL,(Z) such that

LAR = D = diag(d,, d,,...,d,,0,...,0),

s Wgo

whered,>0,i=1,...,s,and d/|d,,,,i=1,...,s— 1

A proof can be found, e.g., in [14] or [8]. The idea is to use elementary operations
of rows and columns of A. Matrices L and R correspond to compositions of these
operations. Though matrices L and R in Theorem 1 may vary, the matrix D is
uniquely defined by A and it is called the Smith normal form of A.

Let us note immediately that Theorem 1 can be used to answer question (*). Given
Ax = b, rewrite it as Dy = ¢ with Ry=x, LAR = D and ¢ = Lb. But the solution to
the diagonal system Dy = c is easy. More details and a numerical example are given
in the Applications section of this paper.

The question of finding an efficient algorithm for computing the Smith normal form
of an integer matrix is not trivial. It is not clear that the direct application of
elementary operations of rows and columns leads to a polynomial-time algorithm: it is
conceivable that the integers get too large. For more details, see [11] and [3].

Some history Theorem 1 has an interesting history: Question (*) seems not to have
been asked, in full generality, until the mid-19th century. Its particular cases appeared
in 18491850 in some number-theoretical studies of Hermite [10, p. 164, p. 265]. In
1858, Heger [9] formulated conditions for the solvability of Ax = b in the case where
A has full rank (i.e., m) over Z. In 1861, the problem was solved in full generality by
H. J. S. Smith [12]. Theorem 1 appeared in a form close to the one above in an 1868
treatise by Frobenius [5] who generalized Heger’s theorem [5, pp. 171-173], and
emphasized the unimodularity of the transformations [5, pp. 194-196].

By then many important results on abelian groups had been discovered. Introduced
by Gauss, the concept of an abelian group was developed both in number-theoretical
studies of Gauss, Schering, Kronecker, and Dirichlet, and in the studies of elliptic
functions and abelian integrals of Gauss, Abel, and Jacobi. Not until 1879 did
Frobenius and Stickelberger [6] discover and use explicitly the connection between
the theory of finitely generated abelian groups and Smith’s theorem. In the same year,
Frobenius showed that Smith’s theory (extended to matrices over polynomial rings)
could be used to classify square matrices over fields, up to similarity. (For further
history, see [4] and the Historical Notes in [2].) The story reminds us, in particular,
that many basic notions and facts of linear algebra (including module theory) were
developed within the context of number theory.

Applications  Our first application is related to question (*). It also contains a proof
of the aforementioned theorem of van der Waerden. Let Q denote the field of
rational numbers.

PROPOSITION 2. Let A, L, R, D be as in Theorem 1, b € Z" and ¢ = Lb. Then the
following four statements are equivalent:

(1) The system of linear equations Ax =b has an integer solution
(2) The system of linear equations Dy = ¢ has an integer solution
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(3) For every rational vector u such that w A is an integer vector, the number ub is
an integer

(4) For every rational vector v such that vD is an integer vector, the number vc is
an integer.

Proof. (1)« (2) Indeed, Ax=b < (L~ 1DB x=beD(R'x)=ceDy=c,
where y =R™'x. Since R € SL,(Z), then R~ € SL,(Z). Therefore x€Z" < y =
R 'xez"

(3) « (4): Indeed, vDEZ" &» v(LAR)€Z" «» (VL)ARE Z" & (vL)A € Z"R™!
=7"<uA€Z" where u=vL. L € SL,(Z), then u € Q™ < v & Q™, and, by (3),
ub€Z. But ub€eZ « (vVLXL '¢c) € Z & vc € Z. Therefore (3) implies (4). Revers-
ing the order of the argument, we get uA€Z" »vDE€Z" and veEZ s ub < Z.
Therefore (4) implies (3).

(2) ® (4): Dy=c implies v(Dy) = ve for every v€ Q™, hence (vD)y =ve. If
vD € 7", then ve € Z. Thus (2) implies (4). In order to prove that (4) implies (2), first
we observe that ¢ = (cl, -+,€4,0,...,0). For suppose ¢;#0, j>s. Consider v=
©,...,0,1/(2¢)),0,...,0) where 1 / (20 ) appears in the ]-th position. Since vD =0
€ Z" then by (4) ve=1/2€Z, and we arrive at a contradiction. Thus ¢; =0 for
j>s. Next, for i=1,...,s, we consider vectors v; =(0,...,0,1/d,,0,...,0). Since
v;D € Z", then by (4), vicEZ and hence ¢,/d, €Z. Let y=(y1, . 4,0,...,0),
where y,=c¢,;/d;,i=1,...,s. Theny € Z", and Dy =c. |

With notations as in Proposition 2, one can reduce the solution of the system
=b to a solution of Dy = ¢ by performing elementary transformations (over Z) of
rows and columns of matrix A augmented by vector b. Matrices L and R can be
constructed by multiplying matrices corresponding to these transformations. System

Dy = c has a solution if and only if ¢,,, = - =¢,, =0, and d/Ic, for i=1,...,s5. A
general solution of Dy=c can be given in the form y=(y,,..., ¢y, t,....t,_,),
where y,=c,/d;, i=1,...,s,and ¢,,...,t,_, are free integer parameters. Then the

general solution of Ax=Db is just Ry. Clearly, we may assume that each equation is
reduced by the greatest common divisor of the coefficients of the variables.

EXAMPLE. Solve the system of diophantine equations Ax = b, where

X
| 2 1 4 _ _ 17
A—(_5 9 6)’ x=|%|, and b (_13).
X3

Solution. Consider a sequence of elementary transformations of rows and columns
of A. It is well known that they can be achieved by multiplying A by unimodular
matrices. Let us represent the transformation of rows by 2 X 2 matrices L, and the
ones of columns by 3 X 3 matrices R;, where the lower indices reflect the order of
multiplications. We consider the following transformations (matrices):

01 0 1 -2 0 1 0 —4
R,={1 o of, R,={0o 1 of, Ry=|0 1 o,
0 0 1 0 o0 1 00 1
1 o 1 0 0 1 0 0
L4=(_2 1), Rs={0 1 o], Rs={0 1 2}.
0 -5 1 0 0 1
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Let L= L4 a.nd R = Rle R3BSR6' Then

: 0 1 2
_ {1 0\ 2 1 4 _(1 0 o0
posan-( 3023 Y0 8 w)-(3 0 0)

0 -5 -9
e 17

and c—Lb—(_47).
Solving Dy = ¢, and taking x = Ry, we get

o 1 2\( 17 — 47+ 2t

x=|1 18 32|| —47|=|—-820+32¢, |, t €Z,

o -5 -9/ ¢ 235 — 9t,

and the problem is solved. [ |

Another application is concerned with a special instance of the following fundamen-
tal question in number theory. Let Z[x,,..., x,] denote the ring of polynomials in ¢
variables with integral coefficients, and let F(x) € Z[«x,, ..., x,]. It is clear that if the
equation F(x) = 0 has an integer solution, then for any integer n > 1, the congruence
F(x) = 0 (mod n) has a solution. The converse, in general, is false, even for the case of
one variable. A simple counterexample is provided by F(x)=(2x + 1X3x + 1). To
show that (2x + 1)(3x + 1) = 0 (mnod n) has a solution, write n in the form n = 2°3%m,
where ged(m, 2) = ged(m,3) = 1, and a and b are nonnegative integers. Then use the
Chinese Remainder Theorem. For more on the relation between congruences and
equations see, e.g., [1]. Nevertheless the following is valid.

PROPOSITION 3. Let A € M,, (Z), and b € Z". Then the system of linear equations
Ax = b has an integer solution if and only if the corresponding system of congruences
Ax=b (mod n) has a solution for every positive integer n.

Proof. Obviously, the first statement implies the second. Suppose the system of
congruences has a solution for every positive integer n. Let L, R, D, y and ¢ be as in
Proposition 2, and let N € Z be such that the transition from Ax=b to Dy = c uses
integers with absolute values smaller than N. Then for every n > N, Ax=b (mod n)
< Dy=c (modn) & d,y,=c; (modn), i=1,...,s. The latter system of congru-
ences is solvable in particular when n is a multiple of d,. Since d;|d; for every i,
1 <i<s, this implies d,[(d,y; — ¢;), hence d,|c, forall i = 1,..., s. Therefore Dy =c
has an integer solution, and so does Ax =b. |

The following statement allows one easily to compute the index of a subgroup of the
additive group Z", when the index is finite.

PROPOSITION 4. Let f: Z" — Z" be a Z-linear map and A € M,, ,(Z) be its matrix
with respect to some choice of bases. Suppose A has rank n. Then the index of (Z™) in
Z" is equal to |det Al

Proof. By Theorem 1 we can find two unimodular matrices L and R such that
LAR = D = diag(d,, d,,...,d,). Since A is of rank n, all d,# 0. Therefore the
abelian group f(Z")=dZ®d,Z® - ®d,Z, and the order of Z"/f(Z") is
|d\d,...d,|=|det D|. Since L and R are unimodular, |det D| = |det Al. |

ExaMPLE. Let f:Z®—>72 be defined by f((x,y))=(28x+38y,12x + 16y).

Choosing both bases to be the standard basis of Z2, we get A = (28 12

38 16 . Therefore
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the index [Z*: f(Z?)] is equal to |det A|=8. The Smith normal form of A is

D=(2 %), hence f@*) =22 0 47.

Our next application is related to Proposition 4. It deals with some basic notions of
the geometric number theory. Let R denote the field of real numbers, and S =
{s1,...,8n} be a linearly independent set of vectors in R". The additive subgroup
L ={S) of R" generated by S is called the lattice generated by S. A fundamental
domain T = T(S) of the lattice L is defined as

T={ Y oxs:0<x,<1, x‘ER}.

l<i<m

The volume u(T) of T is defined in the usual way, as the square root of the absolute
value of the determinant of an m X m matrix whose i-th row is the coordinate vector
of s; in the standard basis. Though T itself depends on a particular set of generators
of L, the volume of T does not!

PROPOSITION 5. Let S={s},...,s,} and U={u,,...,u} be two sets of linearly
independent vectors which generate the same lattice L. Then m =t and v(T(S)) =
u(T(U)).

Proof. We leave it to the reader. In case of difficulties, look through [13, pp. 30-33
and pp. 168-169]. u

If one considers A with entries from a field, then by elementary operations of rows
and columns, A can be brought to a diagonal form. It is a trivial exercise to check that
an elementary row (column) operation preserves the dimensions of both row and
column spaces of A. Therefore matrices LAR and A have equal dimensions of their
row spaces and equal dimensions of their column spaces. Since the dimensions of row
space and column space for a diagonal matrix are equal, we have a proof of the
following fundamental result.

PROPOSITION 6. The dimension of the row space of a matrix with entries from a field
is equal to the dimension of its column space. n
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The Golden Ratio is Less Than 72/6

JAMES D. HARPER
Central Washington University
Ellensburg, WA 98926

As a mathematics teacher, I am pleased when an example turns out particularly neat
and tidy. Occasionally, as a bonus, the example reveals an unexpected relationship.
The relationship in the title of this note is not as unexpected or striking as, say, the
implications of the Riemann hypothesis. Indeed, a hand-held calculator will convince
anyone the statement is true. What is unexpected, beyond the serendipity of discover-
ing this inequality as I worked out an example for a graduate analysis class, is that the
proof centers on the Cauchy-Schwarz inequality.

Algebraically, the golden ratio, ¢, is the larger root of the equation x*—x=1;
numerically, ¢=(1+ V5 )/2 = 1.6180. The other number in the title is, as Euler
discovered, the sum of the squares of the harmonic sequence: 1/1*+1/2%+
1/32+ ...

Recall that the space of all square-summable real sequences is an inner product
space with the usual “dot product”:

(%1 %9, X352 ) (Y15 Yoo Yoo o) = %1y T xgyy +a3yg+ ...

The Cauchy-Schwarz inequality guarantees that this inner product exists: For all
vectors X and Y, (X-Y)? < | XII*[lY||%; equality occurs if and only if one vector is a
scalar multiple of the other.

My example begins with the harmonic sequence X=(1,1/2,1/3,...) and its
cousin Y=(1/2,1/3,1/4,...). Both sequences are square-summable, with respec-
tive sums S =72/6 and S — 1. Now, by the Cauchy-Schwarz inequality,

(,,é ;(771+_1)) =1X-YP <IXIPIYI* = $(5 - 1).

The series on the left is the classic telescoping example, with sum 1. Therefore,
1< S(S—1), and completing the square gives: 5/4 <(S—1/2)%. The desired
inequality: (1 + V5)/2 < 7% /6 now follows immediately.

Another surprise is how close these two numbers are to each other; to four
decimals, ¢ = 1.6180 < 1.6449 = /6. Although our sequence vectors are not equal,
they are “almost” equal in that the limit of the ratio of their terms is 1.
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The Golden Ratio is Less Than 72/6

JAMES D. HARPER
Central Washington University
Ellensburg, WA 98926

As a mathematics teacher, I am pleased when an example turns out particularly neat
and tidy. Occasionally, as a bonus, the example reveals an unexpected relationship.
The relationship in the title of this note is not as unexpected or striking as, say, the
implications of the Riemann hypothesis. Indeed, a hand-held calculator will convince
anyone the statement is true. What is unexpected, beyond the serendipity of discover-
ing this inequality as I worked out an example for a graduate analysis class, is that the
proof centers on the Cauchy-Schwarz inequality.

Algebraically, the golden ratio, ¢, is the larger root of the equation x*—x=1;
numerically, ¢=(1 + V5)/2 = 1.6180. The other number in the title is, as Euler
discc;vered, the sum of the squares of the harmonic sequence: 1/1%+1/2%+
1/32+ ...

Recall that the space of all square-summable real sequences is an inner product
space with the usual “dot product”:

(%1, %9, X35 ) (Y15 Y5 Y3+ ) =% Y1 F X yp F X3y + ...

The Cauchy-Schwarz inequality guarantees that this inner product exists: For all
vectors X and Y, (X-Y)* <|IX|*[lY|1%; equality occurs if and only if one vector is a
scalar multiple of the other.

My example begins with the harmonic sequence X=(1,1/2,1/3,...) and its
cousin Y =1(1/2,1/3,1/4,...). Both sequences are square-summable, with respec-
tive sums S = 72/6 and S — 1. Now, by the Cauchy-Schwarz inequality,

- 1
(Z n(n+1)

n=1

2
=|X-YP<IXIPIYI*=S(S—1).

The series on the left is the classic telescoping example, with sum 1. Therefore,
12<S(S—1), and completing the square gives: 5/4 <(S—1/2)%. The desired
inequality: (1 + V5)/2 < 72/6 now follows immediately.

Another surprise is how close these two numbers are to each other; to four
decimals, ¢ = 1.6180 < 1.6449 = 72/6. Although our sequence vectors are not equal,
they are “almost” equal in that the limit of the ratio of their terms is 1.
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A Proof in the Spirit of Zeilberger
of an Amazing Identity of Ramanujan

M. D. HIRSCHHORN
University of New South Wales

Sydney 2052, NSW, Australia

1. Introduction In a recent paper [1], I discussed the following statement, to be
found in Ramanujan’s lost notebook [2]:

If
T g = 1+ 53x + 9x*
nso 1-82x—82x%+x%’
2—26x —12x2
b,x" = ,
E’O T T s2r—82x 41
and
n 2+ 8x — 10x>
,E'Oc”x T 1-82x— 8212440
then

ad+bi=c3+(-1)". (©)

I proved this statement and showed how Ramanujan may have discovered it. In
proving the statement I found explicit expressions for a,, b, and c,, and verified the
conclusion (C). In this paper I show that in order to prove Ramanujan’s statement it is
sufficient to check just the first seven cases, and then I do so. This proof is in the spirit
of Zeilberger [3].

2. Checking the first seven cases is sufficient Each of {g,}, {b,} and {c,} is
generated by

N(x)

D(x)
where
D(x)=1—-82x—82x% +x3
=(1-83x+x2)(1+x)
=(1—ax)(1-Bx)(1-yx)
with

y=-1, a+B=83, aBf=1

(note that a, B, and y are distinct) and where N(x) is a quadratic in x which
depends on the sequence under consideration.

It follows by the method of partial fractions that each of a,, b, and ¢, can be
written as a linear combination of a”, B”, and y". (This was done explicitly in [1].)
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So, each of a2, b3 and ¢3 can be written as a linear combination of the seven

quantities

a®, B, (a%)" = (~a?)", (B%)" = (-5’
(a%)" = (av)" =", (aB?)" = (By?)" = ",
and y*" = (aBy)" = (-1)".

Thus, each of {a3}, {b2}, and {c?) is generated by N(x)/D(x) where D(x) is the
polynomial of degree seven,

D(x)=(1-a®x)(1—B3%)(1+a’x)(1+ B%x)(1 — ax)(1—Bx)(1 +x)
=1+ +x7,
and where N(x) is a polynomial of degree at most six, and depends on the sequence

under consideration.
It follows that

n N(x
¥ (a2 +h a3 - (~1)")x" = 2
nZO( ) D( x)

where N(x) is a polynomial of degree at most six, and where D(x) is as above.
Let g, =a3 +b>—c3—(—1)", and suppose that N(x)=d,+d,x + - +dgx".
Then
n d0+dlx+"' +d6x6
nx =
ngﬂq D( x)

Note that if g, =0 then d,=0; if g,=0 and g, =0 then d;=0 and d, =0, and
so on, and if ¢,...,qe are all O, then d,,...,ds are all 0, N(x) is the zero
polynomial, and g, = 0 for all n.

In other words, if (C) is true for n =0,1,...,6, then (C) is true for all n.(!)

3. Checking the first seven cases We have
ad+bi—ci—1=1%+23-23-1=1+8-8-1=0
al + b} —c}+1=135%+138% — 1723 + 1 = 2460375 + 2628072 — 5088448 + 1 = 0

a3 +bd —c3—1=111613 + 11468° — 14258° — 1
= 1390302566281 + 1508214295232 — 2898516861512 — 1 = 0

ad + b3 — 3 + 1 =926271° + 951690° — 1183258° + 1
= 794720108027000511 + 861958819711809000
—1656678927738809512 + 1 =0

a% + b — c2 — 1 = 768692893 + 78978818° — 98196140° — 1
= 454211987929190138384569 + 492642515740974509159432
—946854503670164647544000 — 1 =0

a} + b3 — ¢} + 1 = 6379224759° + 6554290188° — 8149096378° + 1
= 259599416343366239908412677479
+281563916123235899876883924672
—541163332466602139785296602152 + 1 =0
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and

al + b — cd — 1 =529398785665° + 5439271068023 — 676276803218° — 1
= 148370931181877171204881827258954625
+160924477506781393483609065194721608
—309295408688658564688490892453676232 — 1 = 0.

Thus Ramanujan’s statement is proved.
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Proof Without Words:
The Sum-Product Identities

;

(cos a, sin )

(cos B,sin B)

_a—p _a+p
0=—2— 7=
in o+ si _
smazsmB:s:cosazBsma;—B
cosat+cosB_ . a—B a+pB
— g =t=cos—5—cos—5

—SmnEeY H. Kune
JacksonviLLe UNvERsITY
Jacksonviig, FL 32211
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—309295408688658564688490892453676232 — 1 = 0.

Thus Ramanujan’s statement is proved.
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—Smney H. Kune
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Maximizing the Product of Summands;
Minimizing the Sum of Factors

EUGENE F. KRAUSE
University of Michigan
Ann Arbor, Ml 48109-1003

Introduction The spirit of the times urges all of us, at whatever level we teach, to
promote mathematical investigation and exploration by our students. That being the
case, it is particularly important for future teachers to have the experience of
participating in mathematical research in at least one of their college courses. This
paper outlines an extended investigation that was carried out, as a group project, by
two classes of prospective secondary teachers. A good deal of instructor guidance was
necessary, and many of the details of proof had to be skimmed over, but enough of
the work was left to the students so that they had a sense of participating in the
creation of new mathematical knowledge and of behaving like mathematicians.

The first problem The problem that launched the project was brought to my
attention by Professor Nic Heideman of Rhodes University, Grahamstown, South
Africa. It is intended for 12-year-olds.

Given a positive integer k, find positive integers x, x,, ..., x, that sum to
k and have maximal product.

For example, here are two failed choices for the x, in the case k = 14.
14=2+3+4+5—-2-3-4:5=120
14=3+3+2+2+2+2-3%2=144

Further investigation of the case k =14 leads to the formulation of some general
principles: “Never use a 1.” “Never use a number greater than 4.” “A 4 can always be
replaced by two 2s.” “Two 3s are better than three 2s.” And these principles, in turn,
suggest a loosely framed algorithm: “Use as many threes as possible and make up the
difference with twos.” For school children the original problem can be viewed as
solved at this point, but for college students there is still work to do. The whole matter
of recasting the problem and its solution into mathematical language lies ahead.

DEFINITION 1. Given a positive integer k. A partition of k is a collection of (not
necessarily distinct) positive integers {x, x,, ..., x,} such that £}_, x, = k. A partition
{x, x5,..., x,} of k is called a winning partition of k if TT}_, x,>TI{%, y, for any
other partition {y,, y,,..., y,} of k.

In view of Definition 1, the original problem is simply this:

Problem 1. Given a positive integer k, find a winning partition of k.

The algorithmic solution we arrived at earlier can now be recast in the form of a
theorem.

THEOREM 1. Every positive integer k > 1 has a winning partition. If we agree to
replace any 4 by two 2s, then each k has a unique winning partition. The winning
partitions are as follows:

oIf k =0 (mod3), then the winning partition of k consists of all 3s. The associated
maximal product is 3%/,


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 4, OCTOBER 1996 271

eIf k =1 (mod3), then the winning partition of k consists of two 2s and the rest 3s.
The maximal product is 2%-3*~973,

eIf k =2 (mod3), then the winning partition of k consists of one 2 and the rest 3s.
The maximal product is 2-3*~2/3,

Proof. The four general principles enunciated earlier constitute a proof. First, no
winning partition can include the integer 1. Second, no winning partition can include
an integer expressible in the form a +b where a > 2 and b > 2, because replacing
a+b by a and b in the partition produces a larger associated product, since
a+b<a-b:

ab—-b=(a-1)b=z(a-1)-2=a+(a—2)>a

Third, replacing 4 by two 2s in any partition leaves the associated product unchanged.
Fourth, 2° < 32

The second problem There are at least two reasons why it is difficult to be content
with Theorem 1 as the endpoint of this journey of exploration. First, the three-case
nature of its conclusion is aesthetically somewhat unsatisfying. Second, upon re-ex-
amination, the restrictions in the original problem, that the number k and all of the
summand /factors be positive integers, begin to appear almost “arbitrary and capri-
cious.” Would it not be more natural to relax those conditions and allow any positive
real numbers?

DEFINITION 2. Given a positive real number k. A real-partition of k is a collection
of (not necessarily distinct) positive real numbers {x,, x,,..., x,} such that ©*_, x, = k.
A real-partiion {x, xy,...,x,} is called a winning real-partition of k if
IT7_, x, = TT{%, y, for any other real-partition {y, y,,..., y,} of k.

The second problem, then, is simply this:
Problem 2. Given a positive real number k, find a winning real-partition of k.

Our strategy will be to look at all of the 2-number real-partitions of k and find the
one with maximal product (the “winner” in the 2-number category), then find the
winner in the 3-number category, then the winner in the 4-number category, etc.
Finally we will look for the winner among winners. Lemma 1 describes the category
winners.

LEMMA 1. Given a positive real number k and a (fixed) positive integer n. Among
all of the real-partitions of k that consist of n numbers, the winning real-partition (the
one that yields maximal product) consists of n copies of k /n.

Proof. The result follows from two facts. The first is that the (continuous) real-val-
ued product function p defined on the (compact) set

D={(x1,x2,...,x,,) Y ox, =k, xiZOfora]li}

i=1
by p(x, x4,...,x,) =TI_ x, attains a maximum at some point of D. The second is
that if x,#x; for some i and j, then (xp, %90, Xype e, X500, x,) does not

maximize p: in view of the arithmetic/geometric mean inequality, replacing both «x,
and x; by their average produces an n-tuple that yields a greater value for p.
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Example. According to Lemma 1, these are the winners in the 2-, 3-, 4-, and
5-number categories for k = 10:
{10/2,10/2},{10/3,10/3,10/3},{10,/4,10/4,10/4,10/4},
{10/5,10/5,10/5,10/5,10/5)

The associated products are

(10/2)* =25, (10/3)°=37.037, (10/4)*=39.0625, (10/5)°=32

It appears that the winner among winners is {10/4,10/4,10/4,10/4}.
What we need to do now is determine, for arbitrary k, which value of n yields the
winner among the category winners

{(k/1}{k/2,k/2}{k/3,k/3,k/3} ... {k/n.k/n,... k/n}...

We begin by compiling a partial table, Table 1, of values of k and approximate values
of the products (k/n)" associated with the first few category winners for k. For each
k the largest product among winning products is circled. Patterns in the table suggest
two key facts, which we formalize as Lemma 2 and Lemma 3.

TABLE 1
k (k/1)* (k/2)? (k/3) (k/4)*
1 @) 25 037 003...
2 ® 1 296 0625
3 ® 2.25 1 316...
22/1 =4 ® ® 2.37 1
5 5 463 2.44
6 6 ® 8 5.06
33/22=6.75 6.75 8.10...
7 7 12.25 9.37...
8 8 16 18.96. .. 16
9 9 20.25 @) 2562...
44/3% = 9381 9.48T 20.47...
10 10 25 37.03...

LEMMA 2. The sequence 22/1',3%/22,4* /33,55 /4%, ... is strictly increasing and
has no upper bound.
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Proof. The sequence is unbounded because n”/(n—1""' =[n/(n—D]""!n,
which is greater than n. It is strictly increasing because the function of a real variable,
flx)=x*/(x — 1)*"!, has positive derivative for x > 1.

Lemma 3 generalizes the observation that if, for example, k is between 3°/2% and
4*/33, then the winning product for k is found in column 3 of Table 1.

LEMMA 3. For k > 4, if n is the positive integer such that

n/(n-1)""<k<(n+1)""an (1)
then
(k/1)' < (k/2)" < (k/3)° <+ <[k/(n=D)]""" < (k/n)" (2)
and
(k/n)" > [k/(n+ D] > [k/(n+2)]"" > ... (3)
Furthermore,

(k/n)" =[k/(n—- 1)]"_1 if and only if n"/(n — 1)"_l =k.

Proof. First note that, by Lemma 2, there is a unique positive integer n such that
(1) holds. To establish (2), begin with

n/(n—1)""<k (4

from (1) and apply Lemma 2 to deduce that (i + 1)'*! /i' <k forall i=1,2,...,n — 2.
Replacing k by k'*!/k' in this inequality yields (k/i)'<[k/(i + DI*! for all
i=12,...,n—2; that is

(k/1)! < (k/2)" < (k/3)° < - <[k/(n—-1)]""

which is nearly (2). To establish the final inequality in (2), replace k by k" /k"~!
in (4).

To establish (3), begin with the inequality k <(n +1)"*! /n" from (1) and apply
Lemma 2 to deduce that k <(i + 1)'*! /i’ forall i=n,n+ 1,n +2,... . Replacing k
by ki*!/k' in this inequality yields [k/(i + DJ*! <(k/i)! for all i=n,n+1,...,
that is

(k/n)"> [k/(n+ D" > [k/(n+2)]" %> ...

which is exactly (3). The “Furthermore” statement in Lemma 3 is a trivial exercise in

algebra.

We now have only to summarize our work in a theorem that provides a complete
answer to the second problem.

THEOREM 2. Every positive real number k has a winning real-partition consisting of
n copies of k/n where n is the least positive integer for which

(n + 1)n+l
k< —

The associated maximal product is (k/n)". If k>n"/(n—1)""", then this winning
real-partition is unique. If k=n"/(n—1)""", then there is a second winning
real-partition: (n — 1) copies of k/(n — 1).
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Example. Find the winning real-partition for k = 50. According to Theorem 2, we
need to find the least positive integer n such that

50<(n+1)"*'/n (5)
and then the winning real-partition will consist of n copies of 50/n. Solving (5) looks

like it will require a guess-and-check process, but if we analyze the expression in n a
bit, we can make a good first guess. Notice that

(n+D)""' nt=[(n+1)/n]"(n+1)=[1+1/n]"(n+1)

and recall that [1+(1/n)]" approaches e as n gets large. Thus inequality (5) is
roughly equivalent to 50 <e(n + 1), so a reasonable first guess is n=50/e = 18.
Checking, we find that 19'° /18 = 50.28 and 18'®/17'" = 47.56. Thus n = 18 is the
least positive integer solution to (5). The winning real-partition consists of 18 copies of
50/18, and the associated maximal product is (50,/18)'® = 96,951,601. Compare this
with the winning integer partition of 50, sixteen 3s and one 2, and its associated
maximal product, 316.91 = 86,093,442,

The third problem The example just completed provides a fascinating clue that we
are getting close to something fundamental. The ubiquitous number e seems to play a
key role. For the optimal real-partition of k, {k/n,k/n,...,k/n}, the value of n is
approximately k /e, and thus the repeated summand, k/n, is approximately e.

To decide how to formulate a third problem that will reveal the role of e, we look
back at what we were doing in the final stages of solving Problem 2, but now we write
repeated addition as multiplication and repeated multiplication as exponentiation.

We were looking for a positive integer n and a positive real number r
such that 7-n=k and r" is maximized.

The only restriction left to loosen is the restriction that n be an integer. That is, we
are about to allow ourselves to think, for example, of 10 as “the sum of three-and-
one-half 225,” and to evaluate “the product of three-and-one-half 2¢s.”

DEFINITION 3. Given a positive real number k. A pseudo-partition of k is an
ordered pair of positive real numbers (x, y) such that x-y =k. A pseudo-partition
(x, y) of k is a winning pseudo-partition of k if x¥ >u” for any other pseudo-parti-
tion (u,v) of k.

For example, (50/18,18) is a pseudo-partition of 50, but it is not a winning
pseudo-partition because the pseudo-partition (e,50/¢) has a greater associated
power, e/ ¢ = 97 364,484,

Problem 3. Given a positive real number k, find a winning pseudo-partition of k.

THEOREM 3. Every positive real number k has a unique winning pseudo-partition,
namely (e, k/e). The associated maximal power is e*/°.

Proof. The task is to maximize the function f(x, y) =x? subject to the constraints
x-y=k, x>0, y> 0. Substituting k/x for y into the formula for f yields a function
of one variable, g(x)=x*/* The function g is maximized where its (easily calcu-
lated) derivative is zero, namely at x =e. Thus x =¢ and y = k/e maximize f.

Intermission When we compare Theorem 3 to Theorem 2 and Theorem 1 it
appears that we have reached a satisfactory stopping point. The statement of Theorem
3 is a model of simplicity. There are no special cases, no technical inequalities, no
exceptions to uniqueness. The proof of Theorem 3 is short and direct. And Theorem
3, while including neither Theorem 2 nor Theorem 1 as a special case, certainly
illuminates them both. To anthropomorphize: The numbers in the winning integer
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partition of 50 were all trying to be e, but were prevented by the two restrictions that
(1) they had to be integers, and (2) they had to be integral in number. So most settled
for 3 and some for 2. The numbers in the winning real-partition of 50 were all trying
to be e, but were prevented by the single restriction that they had to be integral in
number. So they all settled for 2.7. Once we allowed a “real number of real
summands,” all those “summands” could become e and the “associated product,” now
a power with real exponent, could achieve its highest value.

With a result as conclusive as Theorem 3 in hand, it is tempting to consider the
project finished. But a glance back at the sum-product questions that we have
answered immediately suggests a related set of “dual” questions in which the roles of
sum and product are interchanged and the goal is to minimize rather than maximize.
Our hope is that the new theorems answering these new questions will closely
resemble old Theorems 1, 2, and 3.

The new first problem The dual of the original problem for 12-year olds is this:
Given a positive integer k, find positive integers whose product is k and whose sum is
minimal. To solve this problem we should follow a path parallel to the one that we
traveled before. We begin with a definition of the multiplicative analog of (integer)
partition.

DEFINITION 1'. Given a positive integer k. An integer factor set of k is a collection
of (not necessarily distinct) positive integers {x,, x,, ..., x,} such that IT!_, x; =k. An
integer factor set {x, x,,..., x,} of k is called a winning integer factor set of k if

Po1x; < LY, y, for any other integer factor set {y,, y,,..., y,} of k.

Example. {2,2,2,3,3} is a winning integer factor set of 72; {3,4, 6} is not.
Problem 1'. Given a positive integer k, find a winning integer factor set of k.

THEOREM 1'. Every positive integer k > 1 has a winning integer factor set. If we
agree to replace any 4 by two 2s, then each k has a unique winning integer factor set,
namely the set of all prime factors (with repetitions) of k.

Proof. Three readily proved observations constitute a proof. First, no winning
integer factor set can include the integer 1. Second, no winning integer factor set can
include a composite number @b where a > 2 and b > 2. (Use the same argument as
in the proof of Theorem 1.) Third, replacing 4 by two 2s in any integer factor set
leaves the associated sum unchanged.

Notice that this new Theorem 1’ is nothing at all like old Theorem 1. Our hoped
for duality has not yet materialized.

The new second problem Just as we did before, we now remove the restriction
that the numbers in a factor set be integers.

DEFINITION 2. Given a positive real number k. A real factor set of k is a collection
of (not necessarily distinct) positive real numbers {1, x,,..., x,} such that IT"_, x, = k.
A real factor set {x},x,,...,x,} of k is called a winning real factor set of k if
Li_yx; < XL, y, for any other real factor set {y,, y,, ..., y,,} of k.

Problem 2'. Given a positive real number k, find a winning real factor set of k.

As before, our strategy is to first determine the winner among all 2-number real
factor sets, the winner among all 3-number real factor sets, the winner among all
4-number real factor sets, and so forth. Then we go on to find the winner among
winners. As before, a simple lemma gives us the winners in each weight class.

LEMMA 1". Given a positive real number k and a (fixed) positive integer n. Among
all of the real factor sets of k that consist of n numbers, the winning real factor set (the
one that yields the minimal sum) consists of n copies of k™.
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Proof. The lemma follows from two facts. The first is that no real factor set that
contains two (or more) distinct numbers can have minimal sum. Again this is an
immediate consequence of the inequality between geometric and arithmetic means.
The second fact is that the continuous function s(x,, x,, ..., x,) = X{_, x; does attain
a minimum at some point of the set

Ix,=k,al x,.>0}.
i=1

To prove this second fact requires some care, since the set D is not bounded. We
omit the rather technical argument to save space.

D= {(xl,xz,...,xn)

Example. The winning real factor sets in the first four weight classes for k = 10 are

these:
{10} with associated sum 10

{10%/2,10'/2} with associated sum 2-10'/? =~ 6.32
{10'/3,10%/3,10'/®} with associated sum 3-10'/® = 6.46
{10%/%,10'%,10"*,10'/*} with associated sum 4-10*/* = 7.11

It appears that the winner among winners is {10'/2,10%/2}.

“To seek out a pattern in the winning real factor sets for various values of k we
proceed, as before, to compile a table (Table 2) of the sums associated with the
different weight classes for small integral values of k. Winning sums are circled. It
appears from the table that the winning real factor sets jump to the right as k
increases. Of particular interest are the values of k at which these jumps (ties for
winner) occur. The first is at k=4. The second is at the value of k where
2k1/2 = 3k1/3, that is, at k = (3/2)>?% = 11.39. The third is where 3k'/® = 4k'/4, that
is, at k=(4/3)*% = 31.57. Extending this pattern suggests strongly a theorem that
solves Problem 2'.

TABLE 2
k 1kV/! 2k!/2 3k /3 4K+

2 ® 2.83 3.78 476
3.46 4.33 5.26

4.76 5.66
5.13 5.98

@
6 6 5.45 6.26

10 10 6.46 7.11

11 11 6.67 7.28

12 12 6.93 7.44
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THEOREM 2. Every positive real number k has a winning real factor set consisting
of n copies of k™ where n is the least positive integer for which

§ < (n +1 )(n+l)n

n

The associated minimal sum is nk'/". If k > (n/(n — 1))"*~ Y, then this winning real

factor set is unique. If k= (n/(n—1)""*"D, then there is a second winning real
factor set: n — 1 copies of k"~ .

The proof Theorem 2’ depends on two lemmas, Lemmas 2’ and 3' below, that are
analogous in statement to Lemmas 2 and 3. As was the case with Lemma 1', the
proofs of Lemmas 2" and 3’ are trickier than were the proofs of Lemmas 2 and 3, and
again, for reasons of space, we omit them.

LemMA 2'. The sequence (2/1)*7,(3/2)*2,(4/3)*3,... is strictly increasing and
has no upper bound.

LEMMA 3'. For k > 4, if n is the positive integer such that
(n/(n_ 1))11(n—1)sk < ((n + 1)/n)(n+l)n

then
k>2kY2 >3k > oo > (n—1)kV®=D > pkl/n
and
nk'/" < (n+ 1)kYOHD < (n + 2)kVOFD <.
Furthermore
nk'/" = (n —1)k"V if and only if ( - u T )n(n v

As we did with Theorem 2, we now apply Theorem 2’ to the case of a large k, say
k=1000. Only a few guesses are needed to find the least integer n for which
1000 < ((n + 1)/n)"*P", namely n =7. Thus, by Theorem 2', the winning real
factor set consists of 7 copies of 1000'/7 and the associated sum is 7 X 1000"/7 = 7 X
2.68270 = 18.77887. We notice two things about this example. First, the sum associ-
ated with the winning real factor set is less than the sum, 21, associated with the
winning integer factor set, {2,2,2,5,5,5}, as it must be since every integer factor set is
also a real factor set. Second, the repeating number, 1000/, in the winning real
factor set is very close to e.

The New Third Problem Guided by our approach to the old third problem, we
reconsider the fact that the winning real factor set for k consists of n copies of k'/",
and we ask what the situation would be if we relaxed the condition that n be a
counting number. (In the definition below, y assumes the role of n.)

DEFINITION 3'. Given a positive real number k. A pseudo factor set of k is an
ordered pair of positive real numbers (x, y) such that x¥=k. A pseudo factor set
(x, y) of k is a winning pseudo factor set of k if xy <uv for any other pseudo factor
set (u,v) of k.

Example. (1000'/7,7) is a pseudo factor set of 1000, but it is not a winning pseudo
factor set because the pseudo factor set (e,In1000) has a smaller associated “sum,”
18.77723 (approximately).

Problem 3'. Given a positive real number k, find a winning pseudo factor set of k.

THEOREM 3'. Every positive real number k has a unique winning pseudo factor set,
namely (e,In k). The associated minimal sum is eIn k.
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Proof. The task is to minimize the function f(x, y) =xy subject to the constraints,
x¥=k, x>0, y>0. Solving the constraint equation xY=k for y yields y=
In k /In x. Substituting that value for y into the formula for f yields a function of one
variable, g(x) =x In k/In x. The function g is minimized where its (easily calculated)
derivative is zero, namely at x =e. Thus f is minimized when x =¢ and y =Ink.

Conclusion In the first half of this paper we began with a problem intended for
children, generalized it twice, and solved all three problems. In the second half we
formulated three dual problems and, paralleling our strategies from the first half,
solved the three new problems. For the first problems in the two families, the
“integer-integer” problems, the results were a bit disappointing: (new) Theorem 1’
bore little resemblance to (old) Theorem 1. For the second problems, the “real-
integer” problems, (new) Theorem 2’ paralleled (old) Theorem 2 closely. Some of the
details of proof, however, were different and more difficult. For the third problems,
the “real-real” problems, (new) Theorem 3' and (old) Theorem 3 turned out to be
almost identical, and even their proofs were “dual.”

Proof Without Words:
The Difference-Product Identities

y
A

(cos a,sin @) 3
a—
2sin
v v 2
A u (cos B,sin B)
a
4 Y
B
-1 0 [ 1 -\
_a—p _a+pg
0=—3 Y="3
sina—sinﬂ=v=2sina;Bcosa;B
a—B  a+p

cos B—cos a=u = 2sin 5 sin

DO

—Smney H. Kune
JacksonviLLE UNIVERSITY
JacksonviLig, FL 32211
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A Markov Chain Analysis
of the Game of Jai Alai

PHILIP J. BYRNE
College of St. Benedict

St. Joseph, MN 56374

ROBERT HESSE
University of Minnesota
Minneapolis, MN 55455

Introduction Jai Alai, a game resembling racquetball, evolved in Spain during the
seventeenth century. In twentieth-century America, Connecticut, Florida, and Rhode
Island operate Jai Alai frontons, where fans can watch the action and bet on the
outcomes of games. While most fans find the play itself exciting, the real mathematical
interest is the manner in which a winner is determined.

Before play begins, the eight players (or two-player teams) are placed in a queue
with assigned post positions 1 to 8. A game consists of a sequence of short matches
between two players; the first match pits player 1 against player 2. The winner of a
match faces the next player in the queue, while the loser of a match returns to the
back of the queue. The first seven matches are worth one point each; succeeding
matches are worth two points. The winner is the first player to reach or exceed seven
points.

Experienced Jai Alai bettors realize, intuitively, that players in low-numbered post
positions have an advantage over players near the back of the queue. Informal analysis
supports this point: for example, player 1 could win the game by winning the first
seven matches, for one point each. Even if he loses an early match, player 1 will likely
have a second opportunity to play. Player 6, on the other hand, could win by surviving
his first five matches (the last three are worth two points each). But if player 6 loses
any of these matches, another player may well reach seven points before player 6
returns to the front of the queue.

We will show how a Jai Alai game can be modelled as a Markov chain, and thus
show how each player’s winning depends on his post position. We will assume for
convenience that all eight players have equal skill, but other assumptions about
relative skills can be readily incorporated into the Markov chain analysis. The same
approach can also be applied to other kinds of bets, such as trifectas and quinielas.

The model To model Jai Alai using Markov chains, we must first define an
appropriate notion of a state. To describe the game at any time requires two data for
each player: (1) his current position in the queue; and (2) his current score. Thus we
assign to the ith position in the queue an ordered pair (a;, b;), with a; the number of
the player in position i, and b; this player’s current score. In particular, ¢, and a, are
the players who will meet in the next match. We now define a state to be an ordered
set {(a;, b)), (ay, by), (as, by), (ay, by), (as, by), (ag, bg), (az, by), (ag, bg)}. The initial
state, for instance, is always {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0)}. The
second state must then be either {(1,1), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (2,0)}
or {(2,1), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (1,0)}.
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We now assume that the outcomes of different matches are probabilistically
independent of one another, and that the probability of player m winning a match
against player n remains constant throughout the game. Then the probability of the
game moving from one state to another depends only on the states, not on the
previous history of the game. With these assumptions, a Jai Alai game becomes a
Markov chain.

We'll need some basic notation and terminology and a fundamental result. First we
order the states in some convenient manner, and assign them labels 1,2,3,... . If the
game is in state ¢ after r matches, the transition probability of moving to state j on
the next match is denoted by p,;. For most states in our Jai Alai game there are only
two other states to which they can move. For every state i of this type, p;; =0 for all
but two j’s, so the ith row of the transition matrix P =(p;;) has only two nonzero
entries. The only other possible states are those in which some player has amassed
seven or more points, winning the game. For all such states i we will take p;; =1 and
pi; =0 if i #j. These states are called absorbing.

For any Markov chain with a finite number of states, we can label the absorb-

ing states with integers 1,2,...,s, and the nonabsorbing with integers s+ 1,
s+2,...,s+t. Then the transition matrix P has the form
oo [0
R Q

where I is the s X s identity matrix, 0 is an s X ¢ matrix of zeros, and R and Q are
t Xs and ¢ X ¢ matrices, respectively. In particular, R gives transition probabilities
from nonabsorbing to absorbing states, and Q gives transition probabilities from
nonabsorbing to nonabsorbing states. It’s a general fact that the (i, j)-entry of the
t Xs matrix (I, — Q)"'R gives the probability that the Markov chain ends up in
absorbing state j given that the initial state was s + i (see the Appendix for the sketch
of a proof). For our Jai Alai application, the initial state is always that in which the
queue has the players in numerical order, and each player has zero points.

A three-player example To illustrate these ideas, consider first a simplified Jai Alai
game, with only three players and two points needed for a win. The first two matches
are worth one point each; a third match, if needed, is worth two points. By analogy
with the eight-player game, a state is an ordered set of three ordered pairs {(a,, b,),
(ay, by), (ay, by)}, where a; and b, denote the player number and current score for
the player in the ith position in the queue. There are, in all, eleven possible states,
which we label as follows:

Label State

{1,0), (2,0), (3,0)}
{1, 1), (3,0), (2,00}
{(1,2), (2,0), (3,00}
{(3,1), (2,0, (1, 1)}
{(3,3),(1,1), (2,00}
{2,2),,1), G, 1)
{2, 1), (3,0),Q,0)
{2,2), (1,0), (3,0)}
{3,1), (1,0, (2,1)}
{(3,3), (2,1), (1,00}
{1,2), (2, 1), (3,1}

—
DU AR OWN O -]

—


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 4, OCTOBER 1996 281

If the three players have equal ability, then the associated transition matrix for this
three-player game is

state
state 1 2 3 4 5 6 7 8 9 10 11

T
1 1 0 0 0 0 0!0 0 0 0 0
2 o 1 0 0 0 0!0 0 0 0 0
3 o 0o 1 0 0 0'0 0 0 0 0
4 o 0 o0 1 0 0'0 0 0 0 0
5 o 0 0 0 1 0!0 0 0 0 0
6 o 0 0 0 o0 1!0 0 0 0 0
7 0 0 0 0 0o 010 5 0o 5 0
8 |5 0 0 0 0 010 0 5 0 0
9 o 5 5 0 0 010 0 0 0 0
10 o 0 0 5 0 010 0 0 0 5
11 o 0 0 0 5 510 0 0 0 0

From this we can compute directly the 5X 6 matrix (I;— Q)" 'R. Its first row,
(.25,.125,.125, .25,.125,.125), displays the probabilities of the Jai Alai game ending in
the absorbing states 1, 2, 3, 4, 5, and 6, respectively, given the initial state 7. Since
player 1 is the winner in absorbing states 1 and 6, player 2 in states 3 and 4, and
player 3 in states 2 and 5, their respective probabilities of winning are .375, .375,
and .25.

The eight-player game Analyzing the eight-player game is similar, but the transi-
tion matrix P is much larger. To find the number of states, we wrote two computer
programs to count all the vertices in an appropriate tree diagram. The root vertex of
this tree corresponds to the initial state of the game; two branches connect the root
with two vertices representing the two states that can occur next. Since each match in
a Jai Alai game has two possible outcomes, most vertices have two branches emanating
from them. Any vertex corresponding to a winning state has no outgoing branches.
Our first program counted 844,767 vertices in this tree diagram. In the eight-player
game (unlike the three-player game) some states can be reached by more than one
sequence of match outcomes. Our second program eliminated these duplications. We
found, in the end, a total of 134,215 distinct states in the eight-player game.

Since we wish to compute (I, — Q)™'R, the size of the transition matrix P might
seem to create computational problems. However, two useful observations come to
our rescue. First, the matrix P is sparse: no row contains more than two nonzero
entries. Sparse matrices often admit special, efficient algorithms for such operations as
multiplication and inversion (see, e.g., [1]). Second, since the Jai Alai game has only
one possible initial state, which we number s + 1, we need only compute the first row
of (I, = Q)7'R to determine the players’ winning probabilities.

This can be done by finding the first row of (I, — Q)~!, which we denote by
(%, %4, ..+, x,), and then multiplying by the matrix R. We can find (x}, x,,..., x,) by
comparing the first rows on both sides of the equation (I, — Q)~'(I, — Q) = I,, which
gives us (x, x5,..., x,XI,— Q) =(1,0,0,...,0). Taking transposes yields the linear
system Ax=b, where A=(I,—Q),x=(x,x,,...,%,),, and b=(1,0,0,...,0)".
The nonabsorbing states can be labelled in such a way that I, — Q is nearly upper
triangular (in the three player game, Iy — Q was upper- triangular). In this case, A is
nearly lower triangular. Thus, after relatively few row operations, back-substitution
can be performed, starting with x,, to successively find values for x,, x4, x3,..., x,.
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The winning probabilities given below, which assume the players to be of equal
ability, agree with those found by Moser [3] in her computer search through all
possible games.

Probability
Player of Winning

1631
1631
.1386
1240
.1020
.1026
.0888
1177

-3 Ut WM

The table has several interesting features. First, since players 1 and 2 begin the game
at the front of the queue and play each other in the first match, symmetry of their
situations naturally results in equal probabilities of winning. Note also that player 8
has a higher winning probability than players 5, 6, and 7. This reflects the fact that
only player 8 can win the game by winning as few as four matches on his first turn to
play. This more than compensates for player 8’s smaller probability of getting a second
chance to play after a loss. The table also supports the general intuition of Jai Alai
bettors that players in low-numbered post positions have an advantage. Note, how-
ever, the small advantage of player 6 over player 5. A possible explanation is that
player 5 needs a string of six wins, while player 6 would need to win only five matches.

Many related problems could be studied with the approach presented here. For
example, Moser [3] used her computer search through the Jai Alai game tree to
determine the probabilities for place, show, and exacta bets when all players have
equal abilities, and also the probabilities of each player winning under certain
combinations of unequally-skilled players. All of these situations could be handled
using Markov chains. For place, show, and exacta bets, we would need to expand the
number of possible states to account for the way ties are broken for place and show in
Jai Alai. If the players have unequal skill, then for each ordered pair of players, (m, n),
we would assign a probability, 6,,,,, of player m winning a match against player n. The
implication for the transition matrix P is straightforward. If the transition from state i
to state j involves player m winning a match against player n, then p,; = 6,,. This
change from the earlier case affects only the nonzero entries of P, so P will again be
a sparse matrix and the Markov chain analysis will remain computationally feasible.

Appendix To find the probability that a Markov chain ends up in a certain
absorbing state given that it started in a particular nonabsorbing state, we note first
that the (i, j) entry of the matrix R gives the probability of moving from nonabsorbing
state s + i to absorbing state j in one step. The (i, j) entry of the matrix QR gives the
probability of moving from nonabsorbing state s + i to some other nonabsorbing state
in one step, and then to absorbing state j on the next step. That is, the entries of QR
are the probabilities of moving from nonabsorbing states to absorbing states in two
steps. Similarly, the entries of Q2R give the probabilities of moving from nonabsorb-
ing states to absorbing states in three steps, and so on. Therefore, the probability that
the Markov chain eventually ends up in absorbing state j given that the initial state
was s + i is determined by the (i, j) entry of the matrix
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R+QR+Q*R+Q°R+...=(L+Q+Q*+Q°+...)R.

It can be shown that all the entries of Q" approach zero as n tends to infinity (see
[2, pp. 43-45]). This condition yields the following matrix generalization of the
familiar formula for the sum of a geometric series:

(L,—Q) '=I1+Q+Q*+Q%+...

(see [2, p. 22]). Thus we see that the (i, j)-entry of the ¢ X s matrix (I, — Q)™'R gives
the probability that the Markov chain ends up in absorbing state j given that the initial
state was s +1i.
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Poker With Wild Cards—A Paradox?

STEVE GADBOIS
Rhodes College
Memphis, TN 38112

I participate in a sporadic poker game whose organizer detests any use of wild cards.
(A wild card can be called anything its holder wishes.) I'd always attributed this
aversion to some personality quirk. Then I discovered a reason to share his concern.

After a recent class in which I tossed out an unsubstantiated claim about wild cards
sometimes altering the accepted hierarchy of poker hands, I decided I'd better
actually do the calculations before my students did. I wasn’t surprised to substantiate
my claim, but I was surprised to discover that unresolvable inconsistencies can arise
when wild cards are used. This note shows how, in one common situation, no matter
what hierarchy is established, the resulting probabilities are incompatible with it. So
perhaps my friend (who happens to be a political scientist, as well as the frequent
victor in our always-friendly games) has more innate mathematical talent than either
of us realized.

The usual hierarchy of poker hands (when played without wild cards) is, from best
to worst, royal flush, straight flush, four-of-a-kind, full house, flush, straight, three-of-
a-kind, two pair, one pair, and junk.1 Without wild cards, this hierarchy is consistent

'Some of these terms may not be self-explanatory. A royal flush consists of an ace, king, queen, jack,
and ten, all in one suit. A straight flush comprises five in a row, all in one suit (but not a royal flush). A full
house includes three-of-a-kind and one pair. A flush consists of five cards in one suit (but not a royal flush
or a straight flush). A straight has five in a row (but not a royal flush or a straight flush). Any other hand is

Junk.
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Junk.
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with the relative frequency of the hands. (For the calculations for 5 card poker
without wild cards, see [2]. Packel allows an ace to be either high or low in a straight
(instead of just high). This does not affect the hierarchy itself.)

If the two jokers are added as wild cards, one more hand is possible: five-of-a-kind.
The first table gives frequencies and probabilities for all possible hands. The verifica-
tions of these frequencies are nice exercises in combinatorics. Here’s one sample of
the systematic (if somewhat pedantic) reasoning involved. For four-of-a-kind, there
are three distinct ways to specify the hand without redundancy.

(a) Select no joker of the two; select one denomination from the thirteen; select all
four of that denomination; select one denomination from the remaining twelve;
and select one of the four of that denomination.

(b) Select one joker of the two; select one denomination from the thirteen; select
three of the four of that denomination; select one denomination from the
remaining twelve; and select one of the four of that denomination.

(c) Select two jokers of the two; select one denomination from the thirteen; select two
of the four of that denomination; select one denomination from the remaining
twelve; and select one of the four of that denomination.

Thus the number of ways to get four-of-a-kind is

G - BN -G NG

TABLE 1 Wild card poker frequencies and probabilities, based on the usual hierarchy

Rank Type Frequency Probability
1 FIVE-OF-A-KIND 78 0.000025
2 ROYAL FLUSH 84 0.000027
3 STRAIGHT FLUSH 480 0.000152
4 FOUR-OF-A-KIND 9360 0.002960
5 FULL HOUSE 9360 0.002960
6 FLUSH 11448 0.003620
7 STRAIGHT 30540 0.009657
8 THREE-OF-A-KIND 233584 0.073860
9 TWO PAIR 123552 0.039068

10 ONE PAIR 1440464 0.455481
11 JUNK 1303560 0.412192
54
(TOTAL) ( 5 ) = 3162510 1

Observe one anomaly in the first table: Three-of-a-kind and two pair are in the
wrong order. But if their positions are reversed, many hands that would have been
three-of-a-kind are now best called two pair. For example, {Ad, 89, 44, JOKER,
JOKER} can be called “three aces” (if three-of-a-kind beats two pair) or two aces and
two eights (if two pair beats three-of-a-kind). So the numbers of these two types of
hands change, as shown in the second table: Two pair and three-of-a-kind are in the
wrong order again! (In fact, the situation is relatively worse than before the reversal.)

A look at the first table reveals that the same phenomenon occurs with one pair and
junk. For example, {Ads, 89, 44, 24, JOKER] can be called “two aces” (if one pair
beats junk) or “junk” (if junk beats one pair, calling the JOKER a king, say). (For
other situations in which junk beats one pair or even two pair, see [1].)
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TABLE 2 Wild card poker frequencies and probabilities, based on a revised hierarchy

Rank Type Frequency Probability
1 FIVE-OF-A-KIND 78 0.000025
2 ROYAL FLUSH 84 0.000027
3 STRAIGHT FLUSH 480 0.000152
4 FOUR-OF-A-KIND 9360 0.002960
5 FULL HOUSE 9360 0.002960
6 FLUSH 11448 0.003620
7 STRAIGHT 30540 0.009657
8 TWO PAIR 302224 0.095565
9 THREE-OF-A-KIND 54912 0.017363

10 JUNK 1645784 0.520404
11 ONE PAIR 1098240 0.347268

The more one looks, the worse it gets. In the original hierarchy, there were 9360
four-of-a-kind hands and 9360 full house hands. So one could arbitrarily decide to
rank a full house above four-of-a-kind. But this would really be disastrous, for then
there would turn out to be 18096 full houses and 624 four-of-a-kind! With two added
jokers as wild cards, there is no hierarchy of hands that is consistent with the
frequency of the hands.
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Counting Squares in Z

WALTER D. STANGL
Biola University
LaMirada, CA 90639

An elementary number theory problem is to determine the possible forms of squares
among the positive integers. For instance, it is easy to see that any square must be of
the form 3k or 3k + 1. (Since every positive integer can be written as either 3¢,
3q + 1, or 3q + 2, simply square these numbers and simplify.) Restated, this assertion
is that 0 and 1 are the squares in Z;, the ring of equivalence classes of integers
modulo 3. In general, a square has the form nk + r if, and only if, r is a square in the
ring Z,. How many squares are there in Z,?

Fundamental notions An element a in Z,, is a square in Z,, if and only if x> =a
has a solution in Z,,. The units of Z, are the elements that are relatively prime to n.
The units that are squares are commonly called quadratic residues (or, more
precisely, the quadratic residues mod n in a reduced residue system) [1, p. 84]. The
quadratic residues have been completely characterized [2, p. 201], and the standard
results will be utilized in what follows.
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We will adopt the following notation: g(n) = the number of quadratic residues in
Z,, and s(n) = the number of squares in Z,,. For example, g(8) = 1 since x* =1 has
a solution in Z (as a matter of fact, all four units, namely 1, 3, 5, and 7, are solutions),
and x2=3, x>=5, and x% =7 do not have any solutions in Z,. Also, s(8) = 3 since
x%=0 and x2 =4 also have solutions in Zg, but x* =2 and x> = 6 do not.

A number-theoretic function f(n) is multiplicative if gcd(m, n) =1 implies f(mn)
= f(m)-f(n). Typical number-theoretic functions that are multiplicative include the
number of positive divisors of n and the sum of these divisors
[1, p. 109]. A number-theoretic function that is multiplicative is completely character-
ized by its values on powers of primes. Both g(n) and s(n) are multiplicative; we
derive both recursive and closed-form formulas for these functions on the powers of
primes. This will allow us to compute s(n) and g(n) for any n, based on the prime
factorization of n.

Suppose ged(m,n)=1. Then Z,,, is isomorphic to Z, XZ, under the ring
isomorphism h: Z,,, > Z,, X Z, defined by h(z) =(z mod m, z mod n) [3, p. 80].
Suppose a is a square in Z,,,,. Then there is a b in Z,,,, such that b® = a. Since h is a
function from Z,,, onto Z,, X Z,, there exists (x,y) €Z,, X Z, such that h(b) =
(x,y). Then h(a)=h(b2)=[h(D)P =(x, y)*=(x% y?), so h(a) is a square in
Z,, XZ,. Hence s(mn) < s(m)-s(n).

On the other hand, if u in Z,, and v in Z,, are squares, then there exist x in Z,,
and y in Z, such that (x%, y*)=(u,0) in Z,, X Z,.. Thus h~!(u,v) =h~[(x, y)?] =
[A=(x, y)I?, so h™!(u,v) is a square in Z,,,. Thus s(mn) > s(m)-s(n).

Combining these results yields the desired equality, showing that s(n) is a multi-
plicative function. To extend the proof to g(n) requires merely the observation that
for any integer b, ged(b, mn) = 1 if, and only if, ged(b, m) =1 and ged (b, n) = 1.

Recursion formula Our next goal is to prove a general recursion formula for the
number of squares in Z,,., where p is a prime greater than 2. Once this is achieved,
formulas in closed form for the various components will complete our counting
procedure. We begin with the observation that the squares in Z,. that are not
quadratic residues are generated by the squaresin Z ,»-s, i.e., b is a square inZ,.-2 if
and only if bp? is a square in Z

First, suppose there is ¢ in % »-2 such that ¢2=kp" 2 +b in Z. Then c?p?=
kp" + bp®. Now ¢p < p" s0 (cp)2 bp isa square | inZ,». Conversely, suppose there
is y in Z,,» such that y* = mp" +sp in Z. Then p? divides y2, so p divides y. Thus
there is ¢ such that y = cp. Then c? =mp"~2 +5 and s is a square in Z s,

Now we wish to count all the squares in Z,.. We begin by observing that the
squares are of two types. Since g(p™) counts the squares in Z . that are units, we
must merely count the squares that are non-units, i.e., multiples of p. Suppose kp is a
square in Z .. Then there is a b such that b2 =cp" +kp. Then p divides b%, and
hence b. Thus p? divides b?, and hence kp, so p divides k. Hence the multiples of p
that are squares are multiples of p®. But by the preceding result, the number of these
will be given by s(p"~2).

Thus we have proven the following recursion formula.

THEOREM. Forn >3, s(p")=q(p") +s(p"~2).

Powers of odd primes In order to obtain explicit formulas for the functions g(p™")
and s(p"), it is useful to deal with the case p =2 separately. The argument for
powers of an odd prime p depends on the existence of a primitive root for p" for
each n. In algebraic language, this says that the units of Z . form a cyclic group with
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respect to multiplication and hence have a generator [1, p. 62]. Since this is not true
for powers of 2 greater than or equal to 3, our approach and results will need to be
altered for that situation.

If p is an odd prime, the Euler phi-function yields the numbers of units of Z,,.,
namely p" —p"~!. There is a primitive root of p". The even powers of this primitive
root are clearly distinct quadratic residues, and the following formula is proven.

THEOREM. If p is an odd prime, then q(p") = (p" —p"~1)/2, forall n > 1.

In order to count all of the squares in Z ., it is useful to look at the first two cases
separately. Since 0 is the only non-unit in Z,,, clearly s(p) =q(p) +1=(p +1)/2.
In Z,2, the non-units are multiples of p, and have squares equal to 0. So s(p?)=
g(p)+1=(p*-p+2)/2.

Now suppose n =3 and n is even. By repeated applications of the recursion
formula, we obtain

n n—1

a1 n—2 __
s(pry =B B

4 3 2
WP mp  pi-p+2
+ 7 T3

_ pn+1 _pn +pn _pn—l +pn—1 —_ +p3_p2+2p +p2_p +92

2(p+1)
B !n+1+ ]+2
2(p+1)
If n is odd, we obtain

. n__,n—l n—-2 __ . n-—1 3 __ .2 +1

_ pn+1 _pn_l_pn_pn-d_ ee +p2+2p+1
2(p+1)
_pti+2p+1
2(p+1)

Our results are summarized in the following theorem.

THEOREM. Suppose p is an odd prime. Then

+1 P-p+2
s(p)=£—§— and s(p2)=LQL.
If n > 3, then
plApt2
. 2(p+1)
S(p )= n+1+2
p_t2ptl
P+ D) nodd.

Powers of two Now we proceed to the remaining case: powers of 2. We need a
preliminary result before moving to our main goal.

Suppose n > 3, and ged(a,2") = 1. Consider the equation x* = a in Z,.. Suppose
b is a solution. Then, clearly, —b is also a solution. Also b # —b, since otherwise
2b = 0 which implies ged (b, 2") # 1 while we know ged(b?,2") = 1. Another pair of
solutions is easily verified to be given by 2"~! + b. These values are also seen to be
distinct by the above argument.
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To show these four solutions are the only solutions, suppose ged(c,2") =1 and ¢ is
a solution in addition to b. Then b*=a=c? in Z,. implies b2 —c2=0 or (b —c¢)
(b +¢)=0in Z,.. Since b and ¢ are both odd, either (b — ¢) or (b + ¢) must be of
the form 4m + 2 =2(2m + 1). So the other factor is a multiple of 2"~! or 0. Hence
c=2""14+borc= tb.

Thus we conclude that if x2 = a has a solution in Z,., then the equation has exactly
4 distinct solutions in Z,n.

We observe that the only quadratic residue in either Z, or Z, is 1. It follows that
g@)=q@=1.

For n >3, there are 2"~! units in Z,», namely the odd numbers. Consider two
units equivalent if their squares are equal. Then the units can be divided into
equivalence classes of 4 units each; hence there will be 2722"! = 2"~3 quadratic
residues in Z,.. Thus for n > 3, g(2") = 2"73.

We are now ready to prove our final formulas. Here’s the result.

THEOREM.
on=l 44
—T— n even
s(2") =
2"l +5
—— = oddn > 3.

Proof. The argument is by induction. Starting with n = 2, it is clear that s(2%) = 2.
Now assume that the formula holds for n < k. There are two cases.

Case 1. k + 1 is even. Then

_ _ 9k=D =1 4 4
S(2k+1) =q(2k+1) +S(2k 1) =2(k+1) 3 + 3
PO A & S S0 A . S A
B 3 - 3 - 3 ’
Case II. k +1 is odd. Then
- 5, 2% D145
S(2k+1) =C](2k+1) +S(2k 1) = 2(k+1) 3 + 3
_ok-2 2745 4207745 20145
- 3 - 3 - 3 ’

The preceding formulas are derivable directly from the recursion formula. For
instance, if n is odd, repeated applications yield

s(2") =q(2") +q(2"7%) + - +q(2°) +s(2")
=2n—3 +2n—5+,,, +1+2.

So we need a formula for the sum of the even powers of 2. Letting x, =1+ 2%+
+ +22" we have

x,=(22)" +(22) + - +(2%)"

_(22)n+1_1
T o1
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2n+2
-1
So x, = -%3—, and

$(2") =x(h-3)/0 +2

2" -1 _ 2"l45
3 -3

A formula for the sum of the odd powers of 2 is obtained from x, by factoring, and
then s(2") is easily computed.
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Magic Squares of Squares
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A problem in the second edition of Guy’s Unsolved Problems in Number Theory [1] is
to prove or disprove that a three-by-three magic square can be constructed from nine
distinct integer squares (Problem D15). There are relationships between magic
squares, arithmetic progressions, Pythagorean right triangles, congruent numbers, and
elliptic curves. This note will follow this chain and show that the following three
problems are equivalent to the original problem:

P1. Prove or disprove that there are three arithmetic progressions such that each has
three terms, each has the same difference between terms as the other two, the
terms are all perfect squares, and the middle terms of the three arithmetic
progressions themselves form an arithmetic progression.

P2. Prove or disprove that there are three rational right triangles with the same area,
such that the squares of the hypotenuses are in arithmetic progression.

P3. Prove or disprove that there is an elliptic curve, y®=x*—n’x, where n is a
congruent number, with three rational points on the curve, (x,, y,), (x,, y,), and
(x5, y3), such that each point is “double” another rational point on the elliptic
curve (“double” in the sense of the group structure for points on an elliptic
curve), and x,, x,, and x, are in arithmetic progression.

The original problem is due to LaBar [2]. Guy [1] notes that the problem requires
finding x, y, and z so that the nine quantities x2, 2, 2%, y® + 2% —x?, 22 +2% —y2,
x?+y? =22 2x% —y? 2x% — 22, and 3x% — y?® — 22, are distinct perfect squares.

Magic squares and arithmetic progressions For any three-by-three magic square
made up of distinct positive integers, there are three positive integers @, u, and v,
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such that the magic square can be expressed (possibly after rotation or reflection) as:

a+u+2v a a+2u+v
a+2u a+u+v a+2v
a+v a+2u+2v a+u.

(See Martin Gardner [3].) Note that any such magic square can be decomposed into
three arithmetic progressions:

a,atu,a+2u;
at+v,a+u+v,a+2u+vu;
a+2v,a+u+2v,a+2u+2v.

Each of these three sequences has the same difference, u, between terms. Note also
that corresponding terms of the three sequences are in arithmetic progression, with
common difference v. Conversely, any set of three arithmetic progressions of length
three with a common difference, and corresponding terms in arithmetic progression,
can be rearranged into a three-by-three magic square.

For example, if a=1, u =1, and v =3, we get the familiar magic square:

8 1 6
3 5 7
4 9 2

The first equivalent formulation, P1, of the original problem should now be clear.

Squares in arithmetic progression It is well known that it is possible to have
three squares in arithmetic progression, but not four (Dickson [4, pp. 435-440]). For

any increasing three-term arithmetic progression of pairwise relatively prime squares,
y g progr P y P q

r?, s2,¢2, there are positive integers p and g such that

r=Ilp*=2pq—q’,
s= p2 + q2, (%)
t=p*+2pq—q7,
p and q are relatively prime, and one of them is even (Dickson [4, pp. 437-438]). For
example, if r=1,s=5, and t=7, then p=2and g=1.

If r2,5%,¢2 are in increasing arithmetic progression, but are not relatively prime,
then there are k, p, and ¢, with k a positive integer, p and q as above, and

r=klp*~2pq—q’
s=k(p?+4g?), and
t=k(p®+2pg—q*).
For the r2, s2, 2 just above, the difference between terms is
s —rf=¢2— 2 = 4k%(p’q — pq°).

Thus the original problem can be stated as find k,, py, g, ks, pa, G, k3, p3, and g,
so that

k¥ (pPg:1 —p197) =k3(p3gs — p2q3) =k3(pigs — psqd) >0,
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and

ki (p3+4f)" k3(p3 +q3)", and k3(p3 +3)°
are distinct and in arithmetic progression. (Note that the fact that one cannot have
four squares in arithmetic progression makes unnecessary any further restrictions on
the “horizontal” and “vertical” differences between terms.)

It is easy to generate any number of three-term arithmetic progressions of squares,
all with the same difference between terms, as we now show. Let u2, v2, and w? be
in arithmetic progression. Let p=0v? and q=v%—u? Then for the three-term
arithmetic progression generated by p and g using (), the difference between terms
is 4u®v®w*(v® — u?), which is a perfect square times v® — u?. Multiplying each term
of the sequence u?, v?, w? by 4u®v?w? gives a sequence with the same difference as
the sequence generated by p and g. This process of generating a new sequence from
a previous one (including the step of multiplying all previous sequences by the
appropriate constant so that all sequences have the same difference between terms)
can be continued indefinitely. If the new sequence is always derived from the last
sequence generated, then all the sequences will be different. This is not difficult to
prove, but we do not do that here.

As an example, start with the sequence generated from p =5 and g = 2 using (*).
These give the sequence 12,29% 412, with difference of terms 840. Next let p= 292 =
841 and q = 840 = 292 — 1%. These give the sequence 14111992, 14128812, 14145612,
with difference of terms 840 X 2378%. Not all sequences with difference a square
times 840 are generated in this way. For example, the sequences generated by p = 6
and g=1, and by p=8 and ¢=7 (and sequences generated from these two
sequences) have differences between terms that are a square times 840, but are not
included in the set of sequences generated from p =5 and g =2.

Pythagorean triples There are simple relationships between three-term arithmetic
progressions of squares and Pythagorean triples. The latter are related to congruent
numbers and rational points on elliptic curves, so these relationships will be of use to
us.

Every three-term arithmetic progression of squares, r2, s2,t2, can be associated
with a Pythagorean triple, X,Y,Z, with X2+Y2=22 by taking X=(r+1)/2,
Y =(t—r)/2, and Z =s. Conversely, each Pythagorean triple generates a three-term
arithmetic progression of squares by taking r=X—-Y, s=2, and t=X+Y. Two
three-term arithmetic progressions of squares have the same difference of terms if, and
only if, the corresponding Pythagorean right triangles have the same area. The second
equivalent formulation, P2, of the original problem should now be clear.

Congruent numbers The square-free part of XY /2 (the result of dividing XY /2
by the largest possible integer square), where X,Y,Z is a Pythagorean triple, is (by
definition) a congruent number. This is clearly also the square-free part of the
difference between terms of the associated three-term arithmetic progression of
squares.

It is more convenient to work with right triangles with square-free area. Note that if
k is the largest integer such that k2 divides XY /2, then the area of the triangle with
sides X/k, Y/k, and Z/k is a square-free integer. In general, X/k, Y/k, and Z/k
will not be integers.

Elliptic curves If n is a congruent number, there is a well-known mapping from

rational right triangles with area n to rational points on the elliptic curve y? =x° — n%x
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given by
x=(Z/2), y=(X2-Y?)Z/8.

Koblitz [5] shows that for each such point, P = (x, y), there is another rational point,
Q, on the elliptic curve such that 2Q = P in the sense of the group structure (briefly
described below) for points on elliptic curves. Conversely, each rational point on the
elliptic curve that is the double of another point (except the point at infinity)
corresponds to a rational right triangle with area n. See Koblitz [5] for further details
on the correspondences between points on such elliptic curves and Pythagorean
triples. The third equivalent formulation, P3, of the original problem should now be
clear.

A group structure on an elliptic curve is described as follows. An elliptic curve
consists of the points (x, y) that satisfy the defining equation, plus a point at infinity,
which can be thought of as lying an infinite distance above the point (0,0). The
inverse, or negative, of a point P=(x, y) on the elliptic curve is the point —P =
(x,—y). The point at infinity is its own negative and is also the identity element for
the group operation. Every vertical line intersects the point at infinity, and these are
the only lines that intersect the point at infinity. If a line is tangent to the curve at
some point, consider the line to intersect the curve twice there, unless the line is
tangent to the curve at a point of inflection, in which case consider the line to
intersect the curve three times at that point. With these conventions, if a line
intersects the curve twice then the line intersects the curve exactly three times. This
fact can be used to define a group operation, ®, by taking P® Q® R=0 if P, Q,
and R lie on the same straight line. That is, P@ Q= —R if P, Q, and R are
collinear. To determine P & P(= 2 P) for a point other than the point at infinity, take
the tangent through P, find the other point of intersection with the curve, and take
the negative of this last point. If P and Q have rational coordinates, then P & Q will
have rational coordinates. It is easy to see that ® is commutative, that each group
element has an inverse, and that the identity behaves as it should. That & is
associative is more difficult. See Koblitz [5], or other references on elliptic curves for
more details. The operation @, as we have defined it, is not the only way to define a
group structure on the elliptic curve (see Cassels [6]).

There is a relationship between the doubling of points on elliptic curves and the
method given above to generate a new three-term arithmetic progression of squares
from a given one. Namely, if the point P corresponds to the three-term arithmetic
progression u?, v?,w?, then 2P corresponds to the three-term arithmetic progression
generated by (*) with p =v? and g =v* — u?.

One potential usefulness of the elliptic curve formulation is that, for a given
congruent number n, the group structure of rational points on elliptic curves shows
there are infinitely many candidates for terms in the needed arithmetic progression.
Thus, one can list as many candidates as one wants. Ideally, one “solves” the elliptic
curve, finding points that generate all rational points on the curve. Failing this, one
can often at least find some integral or rational points on the elliptic curve, and use
these to generate others. My experience has been that there usually are several
integral points with x values between —n and 0, from which other points can be
found.

Elliptic curves of high rank might be more likely than curves of lower rank to have
three points meeting the conditions of formulation P3. (It is a theorem [5] that the
group of rational points for an elliptic curve is T X Z" where T is the subgroup
consisting of all elements of finite order. The rank is r.) Wada and Taira [7] compute
the ranks of all elliptic curves of the form y2=x%—n%x for all but 77 congruent
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n < 10,000. The curve has rank three for n = 1254, 2605, 2774, 3502, 4199, 4669,
4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, and 9654. Noda and Wada [8] has a
table that is an essential part of the results given in [7].

Martin Gardner ([9, 10)) also discusses this problem and gives some related results.
He offers $100 to the first person who constructs a three-by-three magic square of
distinct squares.
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1. Russian roulette Russian roulette provides a standard exercise in probability.
Let us quote from [1], p. 32:

Russian roulette is played with a revolver equipped with a rotatable
magazine of six shots. The revolver is loaded with one shot. The first
duellist, A, rotates the magazine at random, points the revolver at his head
and presses the trigger. If, afterwards, he is still alive, he hands the
revolver to the other duellist, B, who acts in the same way as A. The
players shoot alternately in this manner, until a shot goes off. Determine

the probability that A is killed.
The answer is 6 /11.
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2. Generalization In this article we will consider the following generalization.
There are n participants A, A,,..., A,, where n > 2. Each person has one revolver.
At each trial the probability is p that a shot goes off, independently of what happens
at other trials. The participants shoot in circular order

AjAy.. A AA, .. A,....

First, A; uses his revolver, and either dies or survives. Thereafter, A, uses his
weapon, and either dies or survives, and so on until one person is left; he is the
winner. We want to determine the probability P,,, i=1,2,...,n, that A, is the
winner.

In order to avoid unpleasant associations in our subsequent discussions, we will now
replace the revolvers with coins, which turn up heads with probability p and tails with
probability g = 1 — p. When a player tosses his coin and obtains heads, he disappears
from the list AjA,... A, A A,.... The last person remaining on the list is the
winner.

3. Two players Let two people play. If A, obtains heads at the first toss, he
disappears and A, is the winner. If A, obtains tails, the roles of the players become
interchanged. These arguments lead to the relation

Py=p-0+q(1—Py),
and so we find

1

P12= =m.

4 . p
1+q° "2

If p =1/6 we obtain classical Russian roulette with the probabilities 5/11 and 6 /11,
respectively.

4. First recursive solution For any number of players, the P,’s can be found
recursively, beginning with two players, thereafter continuing with three, and so on.

(a) Three players.
The players toss in the order A; A, A;A; A, A, ... . There are two main cases:

(i) The first toss results in heads. Player A, disappears. Players A, and A, remain,
and for the rest of the game they take the places of A; and A,, respectively, in
the problem for two players.

(i) The first toss results in tails. Players A, A,, A; remain, and for the rest of the
game they take the places of A,;, A) and A, in the original problem for three
players.

Applying these considerations three times, we obtain the system of equations
Piy=p-0+qPy
Pyy =pPyy +qPyy
Pyy = pPyy + qPy,.
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We already know P, and Py, so solve the system with respect to P4, Py; and P,,.
The solution is

3
p=-PL 44

~1+g 1+qg+q2

Ppy=—1I1
1+qg+q?

2

Py =P q

= + .
l+9 " 1+g+4°

(b) Four players.
When four players participate, we first solve the problem for three players and
determine the P,’s from the system of equations

Pyy=p-0+qPy

Pyy =pPy3 +qPy
Pyy =pPyy +qPyy
Py =pPy + qPy,.

It is now clear how the problem is solved for any given number of players:
We have P,, =qP,, and

Pin =pPz'—1,n—1 +qPi—1,n’

where i =2,...,n.

5. Second recursive solution We begin the second recursive solution by con-
structing a recursion for P, ,,.

If at the first toss A, obtains heads, he does not win the game; on the other hand, if
he obtains tails, he will appear at the beginning of the second round. Suppose that
there are k + 1 people on the list after the first round. This happens if k of the
players A,,..., A, obtain tails during the first round; according to the binomial
distribution this happens with probability

-1 n—1—
(nk )qkp 1-k

On the other hand, when there are k +1 people on the list, the probability that,
counted from the second round onwards, A, wins the games is P, ;,;. Summing over
the binomial probabilities we obtain the recursion

n—1
-1 n—1—
Pln=qk2 (nk )qkp ! kPl.k+1a
=0

starting with P;; = 1.
We are now able to construct a recursion for P,,, i > 2. Suppose that, in the first

round, k of the players A,,..., A;_; obtain heads. This happens with probability
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When A, tosses his coin in the first round, he is first in a game with n — k people, so
he wins with probability P, ,_;. Summing over the binomial probabilities, we obtain

the recursion

i—1

i—1 L

Pin=kz (i k )qui ! kPl,n—k‘
=0

By first computing a suitable number of P,;’s, we are able to find P, for any i >2
and n.

This recursive method requires a smaller number of operations than the method
described in the previous section.

6. Explicit solution We will now derive an explicit expression for the probability
P,, that A, wins. Let us then suppose that the game is prolonged until the winner,
though being alone, goes on tossing until he obtains heads. In the main part of the
solution we will assume that 1 <i <n.

Let B, be the event that A; obtains heads for the first time in the (j + 1)st round,
where j=0,1,... . (Remember the prolongation of the game.) The events B, are, of
course, disjoint, and we have P(B,)=q’p. If B, occurs, A; can never win, so we
exclude this case. Given that B;, j >0, occurs, A, wins if the following events C; and
D; occur:

C; Players A}, A,,..., A,_, obtain heads before A,, that is, in the (j + 1)st round
or earlier.

D;: Pla{ers Ait1,Ajsg,..., A, obtain heads before A, that is, in the jth round or
earlier,

The probability that A, say, obtains heads at the (j + 1)st round or earlier is
1—¢g/*'. Hence we have

P(C)=(1-¢'")"
Similarly we find
n—i
P(D)=(1-¢’) .
The three events Bj, Cj and Dj are independent. Summing over j we obtain
P, =j21 P(B,C,D;) = El P(B,)P(C;)P(D)),
and so we arrive at the final expression

P,=p El(l-q’”)i_l(l-qf)"-iq’- (1)
j=

We leave it as an exercise to the reader to verify that this expression holds also for
i=1. For i =n the summation runs from 0 to .

It follows from (1) that if 0 <p <1 then P,, <P,, < --* <P,,. This is no surprise:
Remember that A; begins and hence has the smallest chance to win. We also note
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that P,, =qP,,; this also follows directly from the recursive relations at the end of
Section 4. As a consequence, when p is small and ¢ is therefore near 1, the P,,’s are

almost equal.

7. Asymptotics Russian roulette with very many people involved seems unlikely.
Nevertheless, friends of asymptotic solutions may like to study the behavior of (1)
when n is large.
For example, when i =1 it is found that
i n—1
Pln=PE(1_q1) qJ‘
j=1

Replacing the sum with an integral and performing the integration we obtain

P m=- n_%q .
More generally, we have

1

The approximations become better when n grows and/or p decreases; see Table 1
for some very good values for n =5.

TABLE 1. Exact and approximate winning probabilities for the two cases
n=5p=1/6andn=>5p=1/2

Py p=1/6 p=1/2
i Exact Approx. Exact Approx.
1 0.1828 0.1828 0.1447 0.1443
2 0.1904 0.1891 0.1628 0.1603
3 0.1989 0.1959 0.1862 0.1803
4 0.2084 0.2031 0.2169 0.2061
5 0.2194 0.2110 0.2894 0.2404
REFERENCE

1. G. Blom, Probability and Statistics: Theory and Applications, Springer-Verlag, New York, NY, 1989.
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Parallels on the Sphere

J. SCHAER
University of Calgary
Calgary, Alberta, Canada T2N TN4

In the plane, parallels are usually defined as lines that do not meet. On the sphere,
what corresponds to a line in the plane is a great circle, a straightest possible curve.
And since any two distinct great circles intersect in two antipodal points, there are no
parallels on the sphere. (In projective geometry antipodal points are identified, so any
two distinct “lines” always intersect in exactly one “point.”)

One can define a parallel to line L in another way, as the locus of all points on one
side of L that have a constant distance from L. This definition would make the
famous parallel axiom a theorem if we knew that such a parallel was a line. On the
sphere that locus is not a great circle but rather a parallel circle.

A third way to define a parallel uses area: The locus of all points P on one side of
the line AB, that form a triangle ABP with given fixed base and constant area. Since
the base is fixed, the height of the triangle must be constant, and we fall back to the
second definition. On the sphere, the area of a triangle is not simply half of
base X height and so this “parallel” is a different curve.

THEOREM. Given a spherical triangle ABC (with all sides < ). If P is any point
on the circular arc ACB, where A, B are the antipodal points of A, B, then the
triangles ABP and ABC have equal area.

Proof. (See FIGURE) a=a;+¢€, B=B,+ € but ay=a;, B,= B, and a, + B,
+y=7.So a+B+y=a,+ €+ B, + e+ y=m+2¢, hence the area of the trian-
gle ABC is 2€. This area depends only on the locations of A and B, and on €; hence
if P is on the circular arc ACB then the triangle APB has also area 2€. So the
circular arc ACB is the “parallel” (in the third sense) through C of the “line” AB.

FIGURE
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On the Convergence of Hillam’s
lteration Scheme

BERND-JURGEN FALKOWSKI
FAST

Arabellastr. 17

D-81925 Munchen, Germany

In their excellent paper [1] on digital halftoning, Geist, et al., develop an interesting
approach to neural network simulation. In this context they reaffirm a conjecture on
the convergence of a certain numerical iteration scheme originally due to Hillam,
cf. [2}, since they found substantial numerical evidence supporting it. In this note we
prove the conjecture under a more restrictive condition than the one given in [1].
Moreover, we present a numerical example providing evidence that the original
conjecture does not hold.

1. Hillam’s Theorem In [2], Hillam established the following, at first sight remark-
able, result for functions on the real line:

1.1. THEOREM. Iff: [a, bl = [a, b] satisfies a Lipschitz condition with constant K,
i.e., if
If(x) = f(y)l <Klx —yl

holds for all x, y in [a, b], then the iteration scheme

Xp41 = (1 - )‘) X, + /\f( xn)
where A =1/(K + 1), converges to a fixed point of f.!

On the conjecture that this result might extend to higher dimensions, Hillam noted
that a completely new approach would be needed, since his proof relied heavily on the
total ordering of the real line. In [1] Geist, et al., restate this conjecture and offer
numerical evidence for its support. As generalization of the Lipschitz condition they
use

|f(x) _f(y)lmaxSle_ylmax (1)

where | |me denotes the maximum norm on R" In order to deal with Hillam’s
remark, first we define a new function F: [a, b] = [a, b] by

F(x)=(1-2X)x+Af(x).
The iteration scheme may then be rewritten as
Xne1 = F( xn)'
With this definition of F we obtain

1.2. LEMMA. F is monotonically increasing.

"Note: We are only concerned with the case K> 1 since otherwise there are iteration schemes known
that converge to a fixed point; cf. [3].
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Proof Suppose x >y. Then we have

f(y) =f(x) < If(y) —f(x)l <Kly —x| =K(x ~y). (2

Setting A:=1/(K+1) as before, we get K=(1—-A)/A and thus inequality (2)
reduces to

A=z +Af(x) = (1= Ny +Arf(y). (3
Inequality (3) says that F(x) > F(y).

We observe as a somewhat surprising effect that the Lipschitz condition on f
implies the monotonicity of F. Now, of course, Hillam’s result seems rather less
unusual in view of the well-known Tarski fixed-point theorem for lattices, cf. [4]. As
far as the convergence of our iteration scheme is concerned, we obtain from (1.2) the
following.

1.3. LEMMA. The sequence (x,) defined inductively by
xg=a
%ue1 = F(x,)
converges to a fixed-point x of F, which is also a fixed-point for f.

Proof. F(a)>a by the definition of F. Hence x, >x, and thus F(x,)=x,>
F(x,) =x, by monotonicity of F. By induction, x,,, >x, for all n. Since a bounded
monotonic sequence converges, lim, ,,, x, =x exists. From the continuity of F,
which is a consequence of the continuity of f, which in turn follows from the
Lipschitz condition, we clearly have F(x) = x. Finally we compute f(x)=x from the
definition of F.

Note at this stage that the result of (1.3) is slightly weaker than Hillam’s result since
we have to start with x,=a. On the other hand, the proof imitates the proof of
Tarski’s fixed-point theorem, and admits an easy generalization to higher dimensions
since it does not use the fact that the real line is totally ordered.

2. A generalization of Hillam’s result Let us first fix some notation: For x =
(x, x9,...,x,) €ER" we set

|ZC|vn = (|x1I, lle,v- o lx,,l) eR".

Moreover for g = (a, ay,...,a,) and b= (b, b,,...,b,) €R" we define [g, b] =
{(x),%5,...,x,) €ER"|a; <x, < b, for 1 <i <n}. Further let the partial order relation
on R" be defined as usual, i.e.,

(%1, %05, %,) < (Y1 Yoo s Yy)
if, and only if,

x, <y, forl<i<n.

1

Then we say that a function g: R" — R" satisfies a modified Lipschitz condition with
constant L if

lg(x) = g(y)lon < Llzx = ylon. (4)
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With these definitions we can easily prove the following generalization of Hillam’s
result to n dimensions.

2.1. THEOREM. Suppose that g: [a,bl—[a, bl satisfies the modified Lipschitz
condition (4). Then the iteration scheme defined by

x0:=‘_l

Xnt1 = (1 - #’)ﬁ+ l“'g(x_")
where p=1/(L + 1), converges to a fixed-point x of g.

Proof. Repeating the calculations of 1.2, we see that the function G defined by
G(x) =1 — w)x + pg(x) is monotonic with respect to the partial order defined on
R". This in turn immediately implies that the sequence

xo = g

41 = G(x,)

is monotonically increasing (as in 1.3). Hence all coordinate sequences are monotoni-
cally increasing and thus convergent and so lim,, . x, =2z exists. By continuity again
x must be a fixed-point for G and thus for g.

Remark 1. Our modified Lipschitz condition is one possible “natural” extension of
the 1-dimensional Lipschitz condition. Unfortunately, it is obviously stronger than
condition (1) that was suggested in [1]. Nevertheless, we feel that it makes sense to
use it, since it guarantees the monotonicity of the function G as in the 1-dimensional
case, which is crucial for convergence. Indeed, one might well ask, whether mono-
tonicity would not be a more natural condition to use in the first place!

Remark 2. Functions satisfying the modified Lipschitz condition (4) may easily be
constructed as follows. Let g;: [a;, b;] = [a;, b;] be functions satisfying the Lipschitz

conditions [g,(x) — g,(y)| < L,le— yl.l Let m: R"™ > R be defined by
m(xy, xg,...,%,) =x,;, and let L be given by L := max, L,. Then

g(x) = (gl(wl(Z))’ gz("’z(.’f))> cees gn(’”n(l‘)))

obviously obeys condition (4).

3. Numerical evidence against the Hillam conjecture Since our modified
Lipschitz condition (4) seems rather restrictive, we shall provide numerical evidence
against the original conjecture using a function g: [g,b]—[a,b] in R?, where
a=1(0,0) and b= (1,1). We define g as follows. Let

1-3x for0<x<i
Alx) = 0 fory<x<l1

fo(x) =sin(mx) for0<x<1

and set

g(xy, %) = (f1( xz)’fz(xl))-

Then g satisfies the Lipschitz condition

lg(x) = g(4)lmax < 7z = Yl mmax -
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Using the value 3.141592654 for  we find that the function

G(z)=(1—-u)x+pg(x),

where
-1
RN CESVE
gives rise to a sequence defined inductively by
%o=(0,0)
Xn+1 = G(f_q)
The sequence begins to cycle for n = 250 through the nine different values given by

(0.0922915121, 0.247146055),
(0.132437981, 0.25650258),
(0.156113482, 0.29215620),
(0.148246434, 0.335343035),
(0.112451887,0.362803981),
(0.0853000404, 0.358740632),
(0.0647040891, 0.336054069),
(0.0490810923, 0.303656586),
(0.0587269346,0.267420753).
This somewhat surprising result provides strong numerical evidence that Hillam’s

conjecture does not hold if the Lipschitz condition is defined using the maximum
norm.

Concluding Remark. It would be most interesting to find other conditions that
guarantee convergence of the iteration scheme since 2.1 doesn’t seem to cover the
special case considered in [1].

REFERENCES

1. Geist, R., Reynolds, R., and Suggs, D., A Markovian framework for digital halftoning, ACM Transac-
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3. Krasnoselski, M. A., Two remarks on the method of successive approximations, Uspehi Math. Nauk
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PROBLEMS

GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by March 1, 1997.

1504. Proposed by Erwin Just, emeritus, Bronx Community College, Bronx, New
York.

For which positive integers n does there exist a set of n distinct positive integers
such that
(i) each member of the set divides the sum of all members of the set, and
(i) none of its proper subsets with two or more elements satisfies (i)?

1505. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Canada,
and Cecil C. Rousseau, The University of Memphis, Memphis, Tennessee.

Let a and b be positive numbers satisfying @ + b > (a — b)*. Prove that

1

x%(1 —-x)b +xb(1 —x)a < ZeT

for 0 <x < 1, with equality if and only if x =1/2.

1506. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let I and O denote the incenter and circumcenter, respectively, of A ABC.
Assume A ABC is not equilateral. Prove that £ AIO < 90° if and only if 2BC < AB +
CA, with equality holding only simultaneously.

1507. Proposed by Howard Morris, Ridgeland, Mississippi.
b

n

For what real values of a and b, does the sequence (b,), , , defined by b, ,, = ¢*
converge?

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail
address.

304
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1508. Proposed by Saul Stahl, University of Kansas, Lawrence, Kansas.

Let det, denote the determinant of the n X n matrix whose entries are indepen-
dent random variables each of which has value 1 with probability p and value 0 with
probability 1 — p. Compute the mean and variance of det,, for each positive integer n.

Quickies

Answers to the Quickies are on page 000.

Q853. Proposed by S. B. Karmakar, Piscataway, New Jersey, and Murray S.
Klamkin, University of Alberta, Edmonton, Canada.

Are there any positive integral solutions to the Fermat-type equation
xm/3 + ym/3 = zm/3
where m > 3 is a given positive integer relatively prime to 3?
Q854. Proposed by Eugene Sard, Huntington, New York.

In acute triangle ABC with sides AB < AC < BC, which of the three inscribed
squares has largest area?

Q855. Proposed by Jens Peter Reus Christensen and Mogens Esrom Larsen,
Kpbenhavns Universitet, Kgbenhavn, Denmark.

For positive integers m and n, prove that

4n-3
Z eZm’k"‘ /(4n=2) _ 0.
k=0
Solutions
A Recursive Optimization October 1995

1479. Proposed by Donald E. Knuth, Stanford University, Stanford, California.

Let m, be the maximum value of the quantity
x x
1 -+ 2 x
(I +x, +x,+ -+ +x,)

n

+ cee +——
(1 +xy+ - +x,)° (1 +x,)?

over all nonnegative real numbers (x,,..., x,). At what point(s) does the maximum
occur? Express m, in terms of m,_,, and find lim, , , m,.
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Solution by David Zhu, Jet Propulsion Laboratory, Pasadena, California.
Consider

X

(x+b)*’

a
g(x)=x+b +

where @ >0 and b > 1. Then g(x) attains its (absolute) maximum (1 + a)?/(4b) at
x=b(1-a)/(1 +a).

Let
fulx, 29,000, %))
x x x
B (1+x, +x21+ e tx,)? * (1+x, +2 +x,)’ e Q1 +:c”)2’
Fix x4, x3,..., x,,, and view f, as a function of x,. Its maximum value is
(1+a)? ) 1 Xy X,

+ NPT B—
4 Lhag+ oo txy © (L4xy+ o +1x,)° (1+x,)*

for x; =(1 +x4+ -+ +x,)1 — a;) /(1 + a,), where a; =0.
As a function of x,, the above expression attains its maximum value,

(1+(l2)2 . 1 + *3 + .o +_L
4 Lhag+ 42 (LT4a,+ - +1,)° (1 +x,)*’
3 n n

at xg=(1+x3+ - +x, M1 —a,)/(1 +a,), where a, = (1 +a,)?/4.
Repeating this process leads to
(1+an—1)2. 1 + Xn
4 1 +x,, (l +x”)2 ?

Wthh attains its maximum value, (1+¢,)?/4, at x,=(1—a )/(1 +a,), where
=(1+a,_,)/4.
Thus a,, is the maximum value of f,, where a, is defined by

1+a,)?
a,=0, and a,, = —(_Ti’ forn > 1.
The maximum of f, occurs at the point (x, x,,..., x,) which satisfies
1=,
n~ T+a,’
1
=@ +xn)'1—+a—"—

l_al
x=(1+xy+ " +x,) T

It is easily verified that ¢, > a,_, and 0 <a, <1if0<a,_, < 1. Hence, 2, %,,..., x,,
are nonnegative. Since (a ) is a bounded and monotonlcally increasing sequence, it
converges. Let lim, , ., a, = a. Thus a satisfies @ = (1 + a)*/4, which implies a = 1.
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Also solved by Anchorage Math Solutions Group, Rich Bauer, Robin Chapman (U.K.), Con Amore
Problem Group (Denmark), Steve Deckelman, Robert L. Doucette, L. R. King, M. S. Klamkin (Canada),
Bogdan Kotkowski, O. P. Lossers (The Netherlands), Heinz-Jiirgen Seiffert (Germany), WMC Problems
Group, and the proposer. There were two incomplete solutions and one incorrect solution.

A Partition Identity October 1995

1480. Proposed by Ron Rietz and John Holte, Gustavus Adolphus College, St. Peter,
Minnesota.

Prove that
n 4 ix-1 k o+
T Y o Y gt o A2
— i
=0 iy=0 ;=0 j=1 l-r

for r#+ +1, k=1,23,..., and n=0,1,2,....

Solution by F. C. Rembis, Clifton, New Jersey.
For notational simplicity let

n i) gy k _
c(kin)= ¥ X o ¥ itttk and m(k, n) = |

: — ]
i1=0 i3=0  ix_g j=1 1-r

We will show o(k,n)= m(k,n) by induction on k +n. The cases when k=1 or
n = 0 are easily checked, which include the case k +n = 1. Suppose o (I, m) = w(l, m)
for | +m <k + n. Since

o(k,n)=0(k,n—=1)+ro(k—-1,n)
=m(k,n—1) +r"w(k—1,n),
for k> 1 and n > 0, we need to show 7(k,n) — w(k,n — 1) = r"w(k — 1, n). Now

n+k

1-r 1-7r"
w(k,n) =—1—_r—k—7r(k—1,n) and w(k,n—1) = T w(k—1,n),
s0
1—rtk 1 —ypn
w(k,n) w(k,n—l)—( T F —l_rk)w'(k—l,n)
=r'w(k—1,n),
and the proposition holds.

Comment. Harald Fripertinger points out that the coefficient of r/ in the expansion
of the left-hand side is the number of partitions of j into at most k parts such that the
largest part is at most n, and that the right-hand side is the product expansion of the
g-binomial coefficient, citing Proposition 1.3.19 of R. P. Stanley’s Enumerative
Combinatorics for a proof of the equality.

Also solved by Anchorage Math Solutions Group, Michael H. Andreoli, Nirdosh Bhatnagar, David
Callan, Robin Chapman (U.K.), Con Amore Problem Group (Denmark), Qais Haider Darwish (Oman),
Jesse 1. Deutsch, Robert L. Doucette, Harald Fripertinger ( Austria), Brad Gubser, Bogdan Kotkowski,
Kee-Wai Lau (Hong Kong), O. P. Lossers (The Netherlands), Can A. Minh (student), Jean-Claude
Ndogmo (Cameroun) and Pavel Winternitz (Canada), Michael Vowe (Switzerland), and the proposer.
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A Characterization of Constant Acceleration October 1995

1481. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

It is known that if a point moves on a straight line with constant acceleration and
81,89, 83 are its positions at times ¢, ¢,, ¢5, respectively, then the constant acceleration
is given by

9 (s3=83)t1 + (3= 81)t + (51— 5,) s
(t1 = ta) (£ —13) (5= 1))
Show that this property characterizes uniformly accelerated motion; that is, if a
particle moves on a straight line and sy, s,, s; are its positions at any times ¢,,¢,, ¢,,
respectively, then if
(sg=s3)tr + (s3=51)ts + (51— 85)
(t —t5) (t, = £5) (85— 1))

the motion is one of constant acceleration.

= constant,

Solution by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana.
Fix ¢, # t,. Then

(sg=s3)t+(s3=8)ta+ (s—85)t5

(t—ty)(ta—t3)(t3—t) 2

for some real number a and ¢ # ¢,, t;, where s is the position corresponding to time
t. Then, (sy—s3)t + (53— )ty + (s — s)ty = (a/2)(t — t, Nty — t,X(t5 — ) for all t.
Solving for s yields a quadratic in ¢, so the given motion is one of constant
acceleration with s” = a.

Also solved by Anchorage Math Solutions Group, Stanley ]. Becker, Joseph E. Chance, Robin Chapman
(U.K)), John Christopher, Con Amore Problem Group (Denmark), Robert L. Doucette, Mordechai
Falkowitz (Canada), Bogdan Kotkowski, Nick Lord (England), Jean-Claude Ndogmo (Cameroun) and
Pavel Winternitz (Canada), F. C. Rembis, Xavier Retnam, Nora S. Thornber, Michael Vowe (Switzerland),
Robert ]. Wagner, WMC Problems Group, David Zhu, and the proposer.

Perfect Numbers in Terms of Triangular Numbers October 1995
1482. Proposed by C. F. Eaton, Pepperell, Massachusetts.

Show that all even perfect numbers, P > 6, are of the form P =1+ 9T,, where T,
is a triangular number of the form T, = n(n +1)/2,n = 8j + 2.

Solution by Bogdan Kotkowski, Kent State University, Tuscarawas Campus, New
Philadelphia, Ohio.

Let P be an even perfect number greater than 6. Then there exists a prime number
p = 3 such that P=27"1(27 — 1). Because p — 3 is even, 2773 — 1 is divisible by 3.
A simple calculation shows that

1 2% —1 2r~%—1
P=1+9-§-(8~——3— +2)(8-—3-—+3).

Also solved by William B. Adams, Anchorage Math Solutions Group, Rich Bauer, Ryan Buschert
(student), David Callan, Robin Chapman (U.K.), John Christopher, Con Amore Problem Group (Den-
mark), Charles R. Diminnie, Robert L. Doucette, Hugh Edgar, Roger B. Eggleton, L. L. Foster, Joe
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Howard, D. E. lannucci (Virgin Islands), Hans Kappus (Switzerland), Sidney Kravitz, Vernon J. Kunz,
Kee-Wai Lau (Hong Kong), S. C. Locke, Nick Lord (England), O. P. Lossers (The Netherlands), David E.
Manes, Don Redmond, F. C. Rembis, R. P. Sealy, Jamie Simpson (Australia), Lawrence Somer,
Selvaratnam Sridharma, David R. Stone, Michael Vowe (Switzerland), Monte ]. Zerger, David Zhu, and
the proposer.

A Trigonometric Relation in Triangles October 1995

1483. Proposed by Alexandru Teodorescu-Frumosu, student, Boston University,
Boston, Massachusetts.

Let ABC be an arbitrary triangle, and let a,b,c, be the lengths of the sides
BC, AC, AB, respectively. Let M be the midpoint of the segment BC, let a=
£ BAM, B= £/ CAM and x = £ AMB. Show that

b acos x

sin@ ~ sin(a—B)"

Solution by Catherine Taylor, student, San Francisco University High School, San
Francisco, California.
Applying the law of sines to A ACM, we find

2sin B _ sin(m—x) _sinx
2 .

Applying the law of sines to A ABC, we find

sin(a+pB) sin(w—(a+x)) sin(a+x)
a B b B b ’
or

sin a cos B+ sin Bcos @ _ sin a cos x + sin x cos a

a b

Subtracting 2sin B cos a/a = sin x cos a/b from both sides, we get

sin @ cos B—sin Bcos @ _ sin acos x

a b ’

or

sin(a—B) _ sin a cos x
— .

Dividing both sides by sin « sin(a — B)/(ab) when a # B, we get

b _ _acosx
sina  sin(a—p)°

Also solved by Reza Akhlaghi, Anchorage Math Solutions Group, John Andraos ( Australia), Francisco
Bellot Rosado (Spain), Kenneth Bernstein, Nirdosh Bhatnagar, J. C. Binz (Switzerland), Robin Chapman
(U.K.), John Christopher, Con Amore Problem Group (Denmark), Charles K. Cook, Robert L. Doucette,
Milton P. Eisner, Mordechai Falkowitz (Canada), R. Govindaraj (India), Joe Howard, Paul Irwin, Hans
Kappus (Switzerland), Jahangeer Kholdi, Bogdan Kotkowski, Victor Kutsenok, Kee-Wai Lau (Hong
Kong), Nick Lord (England), O. P. Lossers (The Netherlands), V. S. “Mano” Manoranjan, Robert C.
Maxell, Shoeleh Mutameni, S. A. Obaid, F. C. Rembis, Noah Rosenberg (student), Alan Shettel,
Selvaratnam Sridharma, Maggie Tran (student), Ian VanderBurgh (Canada), Michael Vowe (Switzerland),
Harry Weingarten, Andrew Ho Kuen Wu, Robert L. Young, Monte ]. Zerger, Ted Zerger, David Zhu, and
the proposer.
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Answers

Solutions to the Quickies on page

A853. There are no positive integral solutions. If there were a solution, there would
be one with (x, y, 2) = 1. On cubing the equation, we get

m/3 -

x™ +y™ + 3(xyz) 2",

so that xyz must be a perfect cube. Either each of x, y, z must be a perfect cube or
else two of them have a common prime factor p. In the former case we get Fermat’s

equation which is now known to have no solutions. In the latter case (x, y, z) # 1.
Consequently, there are no solutions.

A854. Let h, denote the length of the altitude from A to BC, and let s, be the
length of the side of the inscribed square with two vertices on BC, and so.forth. From
similar triangles, we see that
hA_SA_ Sa _ BC'hA
h, BC ° SATBC+h,"

Since BC-h, is twice the area of A ABC, the largest square corresponds to the
smallest of BC + h,, AC + hg, and AB + h;. Now,

(BC +h,) — (AC +hy) = (BC + ACsin £C) — (AC + BCsin C)
=(BC—-AC)(1-sinsC)>0.

Hence s, < sp. Similar reasoning implies sp < s¢, so that the square inscribed on AB
has largest area.

A
hy
Sa
B C
A855. We have
4n-3 2n-2
Z eZﬂik'"/(4n—2) = Z (821rik"‘/(4n—2) +621ri(k+2n—1)"'/(4n-2)).
k=0 k=0

Because (k +2n — 1) —k =2n — 1 is a factor of (k +2n — 1)™ — k™, it follows that
(k+2n=1D"—k™=2n-1 (mod2n —1). It is clear that (k+2n - 1" —k™ =1
=2n — 1 (mod2) as well. Thus e27ik+2n=D"/n=2) — _ p2mik™/(4n=2) hopie

4n-3
Z 821rlk"‘/(4n—2) =0.
k=0
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REVIEWS

PAUL J. CAMPBELL, editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Conway, John H., and Allyn Jackson, Budding mathematician wins Westinghouse Compe-
tition, Notices of the American Mathematical Society 43 (7) (July 1996) 776-779.

Jacob Lurie of Bethesda, Maryland, won first prize in the 1996 Westinghouse Science Talent
Search, a competition for high-school students. (Unfortunately, the first prize of $40,000
does not cover even two years of tuition at a leading university.) His paper treats computable
sets in the surreal numbers, which are the “most natural collection of numbers that includes
both the usual real numbers and the infinite ordinal numbers.” They were discovered by
author Conway in 1969, who applied them to analyzing combinatorial games. Surreal
numbers were also featured in Donald Knuth’s Surreal Numbers: How Two Ex-Students
Turned on to Pure Mathematics and Found Total Happiness (1974). Mention of the book
in historical vein in this column (December 1995: “Older readers (and younger ones who
have explored the library) will remember ... ”) prompted Knuth to advise that not only
is the book still in print but it also has its own home page, at
http://www-cs-faculty.stanford.edu/ knuth/sn.html
which offers errata, translations, and hints for some of the exercises.

Thwaites, Bryan, Two conjectures or how to win £1100, Mathematical Gazette 80 (March
1996) 35-36.

Thwaites reminds readers of his origination in 1952 of what has become known variously
as the 3n + 1 conjecture, Collatz conjecture, and many other names besides the “Thwaites
conjecture.” It says that starting from any positive integer n, iteration of the map

S 3n+1, ifnisodd;
k, if n is even and n = k2™ with k odd.

always leads eventually to 1. Thwaites offers £1,000 reward for resolving the conjecture,
and £100 for resolving another conjecture: Given any finite sequence of rational numbers,
take the positive differences of successive members (including differencing the last member
with the first); iteration of this operation eventually produces a set of zeros iff the size of
the set is a power of 2.

Centenary Issue, Mathematical Gazette 80 (March 1996).

This issue celebrates 100 years of the Gazette (may all our readers still be enjoying a happy
retirement when THIS MAGAZINE celebrates its centennial!). Commemorative articles dis-
cuss production of the Gazette and its history, plus reminiscences and recollections. Notable
articles survey mathematics teaching and twentieth-century mathematics: Jean Dieudonné
on “Mathematics of our day,” Michael Atiyah on “Geometry and physics,” David Lindley
on statistics in the last 100 years, Peter Neumann on “A hundred years of finite group
theory,” and others.

31
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Sterrett, Andrew (ed.), 101 Careers in Mathematics, MAA, 1996; x + 260 pp, $20 (less to
MAA members). ISBN 0-88385-704-9.

“What can I do with a major in mathematics?” The answer, of course, is “anything”; only
9% of male mathematics majors employed in the U.S. work in the mathematical sciences
(but their average salary is second only to engineers). This is a book that the admissions
staff of your institution need to pass around and have on their bookshelf (do yourself a
favor and buy them a copy or two), and that your department needs to have in its common
room. The book contains two-page first-person vignettes with photos of 101 people in “a
wide variety of careers for which a background in the mathematical sciences is useful,” plus
articles on career and job-seeking advice reprinted from Math Horizons. Very few of the
people featured appear to be over 50 (does this suggest that math majors die young?), and
with one exception all have degrees from U.S. institutions and work in the U.S. William
Perry (U.S. Secretary of State; Ph.D. in operations research); Alberto Fujimori (President
of Peru; M.S., University of Wisconsin—-Milwaukee), Alexander Solzhenitsyn (Nobel Prize
for Literature; B.S., University of Rostov), and notables in general are not included, which
is not to say that a background in the mathematical sciences has not been useful to them
(e.g., it saved Solzhenitsyn from some forms of prison labor).

Courant, Richard, and Herbert Robbins, What Is Mathematics? An Elementary Approach
to Ideas and Methods, 2nd ed., revised by Ian Stewart, Oxford University Press, 1996; xix
+ 566 pp, $18.95 (P). ISBN 0-19-510519-2.

Ian Stewart has brought this wonderful classic (first published in 1942) up to date by
adding a new chapter of several pages each on a dozen topics: polynomials that produce all
primes and the Jones knot polynomial; progress on the Goldbach conjecture and on soap
films; proofs of Fermat’s Last Theorem, the Four Color Theorem, and the Steiner ratio
conjecture; the independence of the Continuum Hypothesis, fractals, and the rehabilitation
of infinitesimals via nonstandard analysis.

Stewart, Ian, From Here to Infinity: A Guide to Today’s Mathematics, Oxford Univ. Pr.,
1996; x + 310 pp, $12.50 (P). ISBN 0-19-283202-6.

This is a revised and retitled edition of the magnificent The Problems of Mathematics (1987;
2nd ed., 1992) and complements the Courant and Robbins book above. “The new title is
supposed to indicate that mathematics combines relevance to everyday life (‘here’) with
sweeping intellectual invention (‘infinity’).” Mathematics majors will find it affordable easy
reading about exciting contemporary mathematics; ask your bookstore to stock it.

Cipra, Barry, Lattices may put security codes on a firmer footing, Science 273 (23 August
1996) 1047-1048.

Given a lattice in Euclidean n-space, find a set of spanning vectors that have the shortest
lengths. Milos Ajtai (IBM Almaden Research Center) has shown that there is no efficient
algorithm for any positive fraction of such problems unless there is an efficient algorithm
for all of them (and none is known). Hence randomly generated lattices could form the
basis for digital signatures and authentication (append to your document a lattice problem
whose solution you know) or even new codes.

Yam, Philip, Profile: Martin Gardner, The mathematical gamester, Scientific American
273 (6) (December 1995), 38-41; Puzzling with Martin Gardner, 26.

Biographical and personal profiles of the amateur magician, self-taught mathematician,
Lewis Carroll expert, and long-time author of Scientific American’s Mathematical Games
column. Three of his favorite puzzles are included.
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Cole, K.C., Fairness by the numbers, Los Angeles Times (Washington Edition) (26 April
1996) A1, A8. Peterson, Ivars, Formulas for fairness: Applying the math of cake cutting to
conflict resolution, Science News 149 (4 May 1996) 284-285. Brams, Steven J., and Alan
D. Taylor, Fair Division: From Cake-Cutting to Conflict Resolution, Cambridge Univ. Pr.,
1996; xiv + 272 pp, $18.95 (P). ISBN 0-521-55644-9. Taylor, Alan D., Fair division,
Chapter 13 in For All Practical Purposes, 4th ed., edited by Solomon Garfunkel, W.H.
Freeman, 1996. ISBN 0-387-94612-8.

Agreements on division of marital property or of an estate can falter on the different values
that parties impute to indivisible goods. Countries in conflict over borders face a similar
problem. Authors Brams and Taylor offer algorithms for such disputes that result in “envy-
free” allocations, i.e., allocations in which everyone is satisfied that he or she has received
more than anybody else. For two or three parties, the procedures are fairly simple; to go
to four or more involves a great leap in complexity. The key question, however, is: Will a
population of divorcing couples and their lawyers who are ignorant of—and deeply dislike—
mathematics trust their welfare to mathematical procedures that they do not understand?
As Robert E.D. “Gene” Woolsey (Colorado School of Mines) has often noted, “A manager
would rather live with a problem he can’t solve than with a solution he doesn’t understand.”

Cipra, Barry, A proof to please Pythagoras, Science 271 (22 March 1996) 1669.

Can the positive integer N be the area of a right triangle with rational sides? The integers 5
and 6 are, but 1, 2, 3, and 4 are not. The key to this problem lies not in Euclidean geometry
or elementary number theory but in elliptic curves: Each such right triangle corresponds
to a rational point on the elliptic curve y? = 2% — N2z. Such a curve has either infinitely
many rational points with y # 0 or none. A particular criterion function is zero in the first
case. Hence, if the criterion function is nonzero, N is not the area of a right triangle with
rational sides. The new techniques about elliptic curves that were used in Wiles’s proof
of Fermat’s Last Theorem may lead to a proof of the converse, that when the criterion
function is zero, there is such a right triangle.

Stewart, Ian, Tales of a neglected number, Scientific American 274 (6) (June 1996) 102-103.

The number of the title is the plastic number, so-named because of a genesis similar to the
golden ratio. The plastic number is the limiting ratio of successive terms of the Padovan
sequence described by the recursion P(n +1) = P(n — 1) + P(n — 2) with initial conditions
P(0) = P(1) = P(2) = 1. Architect Richard Padovan used the plastic number in design;
but unlike the golden ratio, the plastic ratio does not seem to have any manifestations
in nature, and the sequence itself seems have no connections with other mathematics.
However, the sequence with the same recursion but initial conditions P(0) = 3, P(1) = 0,
and P(2) = 2, called the Perrin sequence, has an interesting property noticed by Edouard
Lucas in 1876: If n is a prime, n divides P(n). This result provides a speedy test (in logn
steps) for nonprimality, but it is still unknown if there can be a composite n that divides
P(n) (called a Perrin pseudoprime).

Kulig, Christopher J., Winning at Quarto!, Mathematics Teacher 89 (5) (May 1996) 374~
375.

Quarto! is a relatively new board game played on a 4 x 4 grid. Each of the 16 playing
pieces displays a different combination of four binary properties: short/tall, light/dark,
round /square, and solid/hollow. The players take turns placing a piece (chosen by the
other player!), trying to be the first to create a row, column, or main diagonal of four pieces
with the same property. Author Kulig shows how to create positions in which neither player
wins.
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NEWS AND LETTERS

Carl B. Allendoerfer Awards — 1996

The Carl B. Allendoerfer Awards, es-
tablished in 1976, are made to au-
thors of expository articles published in
Mathematics Magazine. The Awards
are named for Carl B. Allendoerfer,
a distinguished mathematician at the
University of Washington, and Presi-
dent of the Mathematical Association
of America, 1959-60.

This year’s awards were presented at
the August 1996 Prizes and Awards
Banquet, held in Seattle as part of the
Joint Summer Meetings.

Judith Grabiner
“Descartes and Problem-Solving”
Mathematics Magazine 68 (1995)
pp. 83-97

This article deals with a big subject in
a fascinating way, and the writing is
superb. The subject is the “method”
of Descartes. We learn, for example,
that one of the fundamental and perva-
sive aspects of the method is working
backward from an assumed solution—
the original meaning of the word “anal-
ysis.” Equally fundamental and perva-
sive is the idea that mathematics con-
sists of solving problems, not deriv-
ing logical systems from first principles.
We see what kind of geometric prob-
lems Descartes addressed, how he used
his method to analyze them, and how
his methods now pervade the practice
of mathematics—very much as he in-
tended they should. The article is an
excellent example of the insight we can

314

gain from an historical view of mathe-
matics.

Biographical Note. Judith V. Gra-
biner is currently the Flora Sanborn
Pitzer Professor of Mathematics and
Professor of Science, Technology & So-
ciety at Pitzer College, Claremont, Cal-
ifornia. Educated at the University of
Chicago (B.S. (Honors) in 1960) and
Radcliffe College and Harvard Univer-
sity (M.A., 1962; Ph.D., 1966), Profes-
sor Grabiner is a leading historian of
mathematics, having written two well-
known books, The Origins of Cauchy’s
Rigorous Calculus, and The Calculus of
Algebra: J.-L. Lagrange, as well as nu-
merous articles. The MAA has previ-
ously honored her with a Lester R. Ford
Award for an article on Cauchy in
the American Mathematical Monthly in
1984. And this is her third Carl B. Al-
lendoerfer Award, the earlier two for
an article on the derivative from Fer-
mat to Weierstrass, in 1984, and an ar-
ticle on the centrality of mathematics
in the history of Western thought, in
1989. Her current work is on the math-
ematics of Maclaurin.

Response from Professor Gra-
biner. I owe this award first to Pro-
fessor Tatiana Deretsky, who suggested
the topic and who invited me to speak
about it at a conference on the 350th
anniversary of Descartes’s Geometry at
San Jose State University in 1987. I
would also like to thank Paul Halmos
and Jerry Alexanderson for their en-
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couraging words about the talk, and Al-
fred Bloom (now president at Swarth-
more) for a valuable debate about
Descartes’s role in European thought,
which sharpened some of the ideas. I
again thank the Mathematics Maga-
zine’s referees, who made helpful sug-
gestions for improvement; my husband
Sandy for reading several drafts and
saying “think about the audience,” wnd
also my precalculus, calculus, and his-
tory of mathematics students for lis-
tening to my discussions of problem-
solving in the Cartesian manner. Fi-
nally, I thank the Allendoerfer Award
Committee and the MAA.

Daniel J. Velleman and
Gregory S. Call
“Permutations and
Combination Locks”
Mathematics Magazine 68 (1995)
pPp. 243-253

This article immediately draws in the
reader with a nice conjunction of com-
binatorial and analytical reasoning.
The authors take a simple, practical
problem and develop the mathematics
clearly and thoroughly. They bring for-
ward techniques from diverse fields as
they need them. The resolution in-
cludes a number of interesting combi-
natorial concepts, including asymptotic
estimates. In particular, calculus and
discrete mathematics are integrated in
ways that an undergraduate might find
surprising and intriguing. The writing
is lucid and brisk; the reader is swept
along but is never disoriented. Both the
solution to the problem and the expo-
sition are models for how these things
should be done.

Biographical Notes. Dan Velle-
man received his bachelor’s degree from
Dartmouth College in 1976 and his doc-
torate from the University of Wisconsin
in 1980. He taught at the University

of Texas and the University of Toronto
before joining the faculty of Ambherst
College in 1983. Dan is interested in
logic, philosophy of mathematics, and
the foundations of quantum mechanics.
He is the author of the book How to
Prove It, and a coauthor, with Joe Kon-
hauser and Stan Wagon, of the forth-
coming problem collection Which Way
Did the Bicycle Go?. In 1994 he re-
ceived a Lester R. Ford Award for the
paper “Versatile Coins.”

A native of Hanover, New Hampshire,
Greg Call completed his A.B. degree at
Dartmouth College in 1980. He did his
graduate work at Harvard under John
Tate, receiving his A.M. in 1981 and
his Ph.D. in 1986. He taught for two
years at Tufts University, before meet-
ing and then joining Dan Velleman at
Ambherst College, where Greg is now
an Associate Professor of Mathemat-
ics. With a dozen student members, he
founded Ambherst’s Student Chapter of
the MAA in the spring of 1990 and, ex-
cept for sabbatical years at Brown in
1991-92 and Harvard in 1995-96, has
served as the Chapter’s Faculty Ad-
visor ever since. While his primary
research interests are in Diophantine
geometry and algebraic number the-
ory, Greg is always ready to collaborate
with his good friend Dan on an inter-
esting problem-of-the-week.

Response from Daniel J. Velle-
man. I am very pleased and honored
to have been chosen for this award. I
would like to thank my coauthor, Greg
Call, for making this project what a
mathematical collaboration should be:
an enjoyable and productive exchange
of ideas leading to a paper that is bet-
ter than either of us would have written
alone.

Response from Gregory S. Call. 1
would like to extend my sincere thanks
to the MAA and to the Committee on
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Allendoerfer Awards, in particular, for
their generous recognition.

As mathematicians one of our great
pleasures is working in collaboration to
solve a challenging problem. Sharing
our results and, whenever possible, ex-
plaining how they were discovered is an
equal joy. Writing “Permutations and
Combination Locks” gave me the op-

portunity to enjoy each of these plea-
sures. In addition, Dan Velleman and I
tried to provide our students with an
accessible model of mathematical re-
search which we hope will encourage
them to undertake their own investiga-
tions. I look forward to those inves-
tigations and the opportunity to share
them with my colleagues in the MAA.

Letters to the Editor

Dear Editor:

I thank Josh Nichols-Barrer (Letters
to the Editor, June 1996, p. 238) for
bringing to light an error in my article
Continued powers and a sufficient con-
dition for their convergence (this MAG-
AZINE, December 1995, pp. 387-392).
He points out that since it does not in
fact violate my convergence condition
for continued squares, my Example III
doesn’t show that the condition for gen-
eral powers p > 1 is not necessary.

As my penance for publicly trans-
gressing first-year calculus, I offer the
following replacement for the lightly-
conceived and ill-fated Example III.
Consider the continued square

S = b+2(0+2(b+2(0+*(b+>(0+2(..))))))

with b = 3/(4*/3). This fails the con-
vergence test for a continued square.
With p = 2, we have R = (p —
1)/p?/®=1 = 1/4, z, = b for n even
and 0 for n odd, and

(- (e

The dominant subsequence of even

n even;

n odd.

terms results in an unbounded expres-
sion, and the test fails.

However, S is equivalent to the contin-
ued fourth power

b+4b+4b+1(...)),

which converges by the boundedness
test: with p = 4, one has R = 3/(4%/3)
and (z,/R)”" = 1*" = 1. The contin-
ued square S therefore converges, but
since it fails the continued squares con-
vergence test, the test remains suffi-
cient but not necessary.

Dixon J. Jones
5112 Fairchild Avenue
Fairbanks, Alaska 99709-4523
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Dear Editor:

Lawrence Zalcman has called my at-
tention to references [2] and [3] below,
related to the question at the bottom
of page 92 in my article Inverse prob-
lems for central forces, this MAGAZINE
69 (April 1996), pp. 83-93. The answer
is yes if the surface is smooth ([3]), but
no in general ([2]).

He also pointed out the following cor-
rections. Zagier obtained his proof in
1982 or 1983, not 1987, and the earlier
proof required no smoothness assump-
tion. On page 92, below display (12),
“integrand” should be replaced by “in-
tegral.” Finally, reference [11] in the
paper should be [1], below.

REFERENCES

1. A. V. Kandraskov, On the unique-
ness of the reconstruction of certain
regions from their exterior gravita-
tional potential, Ill-posed Mathematical
Problems and Problems of Geophysics,
Novosibirsk (1976), pp. 122-129 (Rus-
sian)

2. John L. Lewis and Andrew Vogel,
On pseudospheres, Revista Matematica
Iberoamericana 7 (1991), pp. 25-54

3. Henrik Shahgholian, A characteriza-
tion of the sphere in terms of single-
layer potentials, PAMS 115 (1992),
pp. 1167-1168

S. K. Stein
University of California - Davis
Davis, California 95616-8633

Dear Editor:

Two recent MAGAZINE articles ([1]
and [2]) show that for integers a; <
ay < ... < an, the product of differ-

ences
I (@-a)

1<i<j<n

is evenly divisible by

I G-

1<i<j<n

This problem has appeared in the
USSR Mathematical Olympiad ([3],
Problem 62). Readers may also be
interested to know that when the a;
are all positive, the quotient counts a
rather concrete class of combinatorial
objects: the number of collections of
n pairwise disjoint lattice paths (with
unit steps east or south) joining (0, a;)
to (1 — 1,4 —1) for 1 <i <n (see [4]).

REFERENCES

1. B. Sury, An integral polynomial, this
MAGAZINE 68 (1995), pp. 134-135

2. Robin Chapman, A polynomial tak-
ing integer values, this MAGAZINE 69
(1996), p. 121

3. Shklarsky, Chentzov, and Yaglom,
USSR Olympiad Problem Book, Dover,
New York, NY, 1993

4. Ira Gessel and Gérard Vennot, Bi-
nomial determinants, paths, and hook

length formulae, Advances in Mathe-
matics 58 (1985), pp. 300-321

David Callan

Department of Statistics
University of Wisconsin - Madison
Madison, Wisconsin 53706
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MicroCalc, ver. 7.0

Interactive Calculus Software

MicroCalc covers almost all topics needed for teaching
and learning calculus: single variable, several variable,
differential equations. (Programmed by Harley Flanders)

MicroCalc is menu-driven; there is no language to learn;
its input is the way you write mathematics. MicroCalc is
dedicated to calculus, and has desired calculus topics
ready to run. Examples: generation of sine and tangent,
graphs of Riemann sums, solids of revolution by slabs
and by shells, implicit curves and surfaces, Newton steps
for solving equations, graphical Lagrange multipliers.
About 70 other topics, symbolic, numerical, graphical,
are on MicroCalc'’s menus, plus several utilities.

MS-DOS platform only. 3.5" diskette with /insfall program.

Site license fees:

First 50 workstations: $850; up to 50 additional: $10 each;
still more workstations: $5 each. Upgrade from previous
version: 40% off. (First class mail free. Express mail at cost.)

Sample disk:
$15 paid in advance; $25 by purchase order.

Purchase orders:
(Please include the full name of the licensing school/department.)

MathCalcEduc Federal EIN: 38-2740157
1449 Covington Drive Telephone: 313 761 4666
Ann Arbor, Ml 48103-5630
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Vita Mathematica

Historical Research and
Integration with Teaching

Ronald Calinger, Editor

The use of the history of mathematics in the
teaching of mathematics at all levels is an idea
whose time has come. To use history in the
teaching of undergraduate mathematics, the
instructor must be familiar with the history as
well as the mathematics. Vita Mathematica will
enable college teachers to learn the relevant histo-
ry of various topics in the undergraduate curricu-
lum and help them incorporate this history in
their teaching.

For example, should calculus be approached
from a geometric or an algebraic point of view?
The book shows us how two important eigh-
teenth century mathematicians, Colin Maclaurin
and Joseph-Louis Lagrange, understood the calcu-
lus from these different standpoints and how their
legacy is still important in teaching calculus
today. We also learn why Lagrange’s algebraic
approach dominated teaching in Germany in the
nineteenth century. Some of the reasons for this
are related to the appropriate foundations of the
calculus, and so the book traces the ancient histo-
ry of one of the possible foundations, the concept
of indivisibles. Even though we generally do not
use this concept formally today, many ideas for a
heuristic approach to the calculus can be devel-
oped out of his study.

Vita Mathematica contains numerous other
articles dealing with calculus, with algebra, com-
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binatorics, graph theory, and geometry, as well as
more general articles on teaching courses for
prospective teachers.

This volume, then, demonstrates that the his-
tory of mathematics is no longer tangential to the
mathematics curriculum, but in fact deserves a
central role.

Catalog Code: NTE40
350 pp., Paperbound, 1996, ISBN 0-88385-097-4
List: $34.95 MAA Member: $29.00

ORDER FROM:
THE MATHEMATICAL ASSOCIATION OF AMERICA
P.O.Box 91112, Washington, DC 20090-1112

1-800-331-1622

--------------------------------- ————-------

Membership Code:

Name

Address

City

State Zip

(301) 617-7800 FAX (301) 206-9789

B L

Qry CataLoG CODE PRICE AMOUNT
NTE4C
TOTAL
Payment [ Check 0O VISA 0O MasterCard
Credit Card No. Expires __[___
Signature



http://www.jstor.org/page/info/about/policies/terms.jsp

NATIONAL RESEARCH COUNCIL TEACHING/
RESEARCH POSTDOCTORAL AWARDS
IN MATHEMATICAL SCIENCES AT THE
UNITED STATES MILITARY ACADEMY

The United States Military academy (USMA) and the Army Research Laboratories (ARL) invite
applications for postdoctoral teaching and research associateship awards to be administered by
the National Research Council (NRC). Applicants who are considered by USMA as qualified for
teaching appointments in mathematical sciences will be invited to choose a research project and
develop a proposal based on NRC approved research opportunities at ARL. Awards will be for
3 years and include part-time research during the academic year and full-time research in the
summers. The teaching requirement at West Point includes two sections per semester of under-
graduate mathematics courses (calculus, differential equations, probability and statistics, linear
algebra, etc.). The awards to begin July 1, 1997, include a beginning annual stipend of $40,000,
reimbursement for initial relocation to West Point, an allowance for professional travel and
subsidized health insurance. Applicants must be U.S. citizens and have earned a Ph.D. in math-
ematical sciences within the 5 year period preceding July 1, 1997. Applicants should send a
curriculum vitae, transcripts, a statement of teaching philosophy and career goals, and 3 letters
of recommendation by November 1, 1996 to:

Department of Mathematical Sciences
ATTN: Personnel Officer
United States Military Academy
West Point, New York 10996-1786

Visualization in Teaching and
Learning Mathematics

Walter Zimmermann and
Steve Cunningham, Editors

Buy this book. If you can’t buyit, have the library order  progress in computer graphics has generated a
it. Ifthe library won 't order it, ask to borrow a copy from  renaissance of interest in visual representations
a friend. But do read this book. and visual thinking in mathematics.

—The Mathematics Teacher 930 pp., Paperbound, 1991

High school, community college,fand unzversity leach-  [SBN 0-88385-071-0

ers who use or are interested in ész'ng graphics to teach .

calculus, deductive reasoning, functions, geometry, or List: $34.95 MAA Member: $29.00
statistics will find valuable ideas for teaching... A Catalog Number NTE-19

must for every college or university library with a

mathematics department. —CHOICE

The twenty papers in this book give an overview

of research, analysis, practical experience, and  ORDER FROM:

?nformcd opinion abou.tthc role of visgalizadon The Mathematical Association of America
in teaching and learning mathematics, espe- 1599 Eighteenth Street, NW

cially at the undergraduate level. Visualization Washington, DC 20036

inits broadestsense is as old as mathematics, but  1-(800) 331-1622 Fax (202) 265-2384
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T
and if you thought you knew
what Mathematica was about...

...look again.

http://www.wolfram.com/look/amm ¢ 1-888-984-5004 (Toll Free)

Mathematica is the world’s only fully integrated environment for technical computing and is now used by over a million technical professionals
and students. Mathematica 3.0 introduces major new concepts in computation and presentation, with unprecedented ease of use and a revolutionary symbolic
document interface. Mathematica 3.0 is being released for Microsoft Windows, Macintosh and over twenty Unix and other platforms. For a complete catalog of
Wolfram Research produdts, confoct: Wolfram Research, Inc.: http://www.wolfram.com; info@wolfram.com; +1-217-398-0700; Wolfram Research Europe Ltd.:
http://www.wolfram.co.uk; info@wolfram.co.uk; +44—(0)1993-883400; Wolfram Research Asia Ltd.: http://www.wolfram.co.jp; info@wolfram.co.jp; +81—(0)3-5276-0506.

1996 Wolfram Research, Inc. Mathematica is a registered trademark of Wolfram Research, Inc., and is not associated with Mathematica Policy Research, Inc. or MathTech, Inc
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